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1. Introduction 

1.1. Executive Summary 
 
Since its inception in 2002 the Robotics Club at UCF has pushed students and 
volunteers to the cutting edge of technology and innovation. Through annual 
participation in multiple international autonomous robotics competitions and 
outreach programs the club has excelled in generating robotic platforms capable 
of increasingly complex tasks. These competitions, primarily hosted by the 
Association for Unmanned Vehicle Systems International (AUVSI), include a 
variety of different kinds of platforms such as surface, ground, and underwater 
based vehicles. While upon initial inspection it may seem that such platforms 
operating in completely different environments would be vastly different, they are 
instead very similar in accomplishing some of the basic tasks required for 
autonomy. Since all of the platforms require interaction with their environment 
being able to sense their surroundings accurately has proven difficult for the 
organization to manage across multiple platforms without extreme cost. Of the 
many sensors outfitted on the varying vehicles there is one which universally 
provides an ample amount of real time data for the necessary autonomy. Light 
Detection and Ranging (LIDAR) scanners are used on the largest of the 
platforms fabricated in the club and are great for obstacle detection and 
avoidance. While previous attempts at using the raw 2D data from these sensors 
for map generation has proven beneficial observing a 3D world from 2D data is 
never an ideal scenario. It is the goal of this design group of computer engineers 
to enable 3 dimensional sensing from the physical rotation of a 2D laser scanner 
for use on these platforms. 
 
Power input into the rotating system will be different based on the available 
power regulation requirements of the robotic platforms themselves. It is expected 
that power into this system will potentially be cut off at any time from emergency 
stop systems and therefore must be capable of compensating for power spikes 
and total power loss. Such a system must also be able to accept a range of input 
voltage levels and be able to compensate for inconsistencies via loss throughout 
the system. With the intended end application of the sensor being an outdoor 
environment protection of sensitive electronics and waterproofing of cables 
routed to and from the vehicle and system is of utmost importance. Management 
of cables is also crucial to the system as the sensor is being physically moved or 
rotated increasing the probability of kinks or snags with either the vehicle or the 
system itself. Different approaches can be taken to minimize this risk by 
implementing different rotation schemes or to avoid it by going completely 
wireless. 
 
Fabrication of an embedded system for use in different robots assumes a variety 
of available mounting solutions be made available. Dependent on the rotation 
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scheme chosen mounting of the sensor about the appropriate rotation axis 
should improve accuracy of 3D measurements. Offloading sensor reading to an 
external system enables more computational resources for the platform itself for 
other demanding tasks such as computer vision. Simplified connectors and 
software interfaces provide seamless integration with existing systems. 
Communication between the robots and embedded laser system is therefore 
crucial in guaranteeing interoperability. Abstracting a generalized interface for 
commanding, packaging, and receiving scan data must be as much of a priority 
as is the data itself. Leveraging the Joint Architecture for Unmanned Systems 
(JAUS) architecture as a starting point will ensure that the existing capabilities of 
the robots will mesh properly with the proposed laser scanner.  

1.2. Project Motivation and Goals 
 
With the increasing complexity of modern manufacturing and the birth of 3D 
printing the demand for acquiring spatial data from an environment has never 
been higher. Whether it is a desktop 3D printer or an autonomous car there have 
been many breakthroughs in the past few years which have expanded the ability 
of current light based detection and ranging sensors. These advancements come 
at a price and that price is often in the tens of thousands of dollars. Lower cost 
alternatives have been on the market for some time and have come in some 
surprising forms but usually have tradeoffs. The Xbox Kinect for example is a 
gaming camera device that can achieve many of these functions but fails to work 
outside or at long distances due to its IR camera. Figure 1 demonstrates the 
sensors capabilities indoors. 
 

(Reprinted with permission through fair use policy) 

 
Figure 1 Kinect Depth Image 

 
The goal of this project was to create a three-dimensional sensor capable of 
remaining low cost while still retaining all of the accuracy, precision, and speed of 
higher cost solutions. While the final assembly has many useful functions, the 
primary role is the utilization by the Robotics Club at UCF for their many 
autonomous robotic platforms. Robotic platforms have a uniquely high 
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dependency on the speed and accuracies of such sensors in order to interact 
within dynamic environments reliably.  
 
Over the many years of intense competition with a variety of platforms across 
multiple teams the Robotics Club at UCF has consistently found a need for 
collecting highly accurate 3D data from the environment. The tasks expected of 
the autonomous vehicles built are outlined in the various collegiate level robotics 
competitions sponsored by AUVSI including mainly the IGVC, Roboboat, and 
Robosub competitions. While initially these competitions may appear to be as 
different as the diverse platforms designed for them, in fact, they share almost all 
of the same underlying proficiencies. The vehicles competing in these 
competitions must all be able to interact with and react to changes in their 
environment in a real-time application. Building a system with such a capability 
normally requires construction of a modest map which innately relies on the 
precision of the sensors used in its generation. Approaches by previous robotics 
teams generally attempt to leverage simple 2D data for primitive obstacle 
avoidance techniques which have proven mildly effective. To completely and 
reliably map a real-world environment however one must consider all dimensions 
at once to fully construct a true representation. Attempts have been made by the 
organization to construct such data, but fragmentation in development and the 
loss of computational power by such systems has deterred further development. 
The club has identified this need in recent years and have tasked this group with 
coming up with a solution to this problem. The club has generously offered to 
donate a fast, long range 2D laser range finder to help in the construction of the 
proposed system.  

2. Objectives, Specifications, and Budget 
 
Functionally speaking the project is a fully embedded 3D solution leveraging a 
very capable 2D laser scanner. In order to generate 3D data the sensor is placed 
upon a fabricated mount which physically moves the sensor about an axis of 
rotation. The mechanical device does not restrict the wide field of view of the 
sensor itself and in addition should minimize translational errors due to physical 
sensor movement during scans. Many software features were planned including 
accurate depth mapping and live perspective transforming to real time camera 
feeds. This data is sent out via a network connection in the system. This 
standard allows for streaming of image data generated from each full scan real-
time to multiple platforms if desired across a network. It also enables an ‘always 
on’ operation of the sensor further emphasizing the systems embedded nature. 
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2.1. Project Requirements and Specifications 
 
The Robotics Club at UCF generated a formal list of requirements that the project 
should have adhered to. These technical requirements given by the organization 
and other more generic specifications are listed below by category: 
 

Physical 
 Occupy less than 3 cubic feet. 
 Mounting options on 2 axes. 
 Weigh less than 5 pounds. 

 
Scans 

 Scanning time will be 1.5 sec / scan or better for 45° scans. 
 The assembly will be capable of at least 160° horizontal F.O.V. 
 The assembly will be capable of at least 90° vertical F.O.V. 
 Angular resolution on all axes will be at least 0.5° or better. 
 Ranges from 0.1 to 30 meters. 
 Real time configuration of these parameters. 

 
Power 

 Will run on a single power rail (12/24 V). 
 Maximum power consumption will not exceed 36 W. 
 Onboard regulation for all components. 
 Onboard voltage monitoring 

 
Interfaces 

 PC connection (Ethernet / USB) 
 Power connection 
 Connectors must be waterproof 

 
Software 

 SAE JAUS compliance. 
 ‘Always On’ operation of the system. 
 Drivers, visualization, and monitoring software will be cross-platform. 
 All software will be open-sourced and well documented. 

 
Operating Conditions 

 Performance will be identical both in indoor / outdoor environments. 
 Operating temperatures will be from at least 0 to +50° C. 
 System must be weatherproof, IP Standard 45 or better. 

 

2.2. Budget 
 
This project is funded generously by the Robotics Club at UCF from their in-
house funds and through the various sponsors of the organization. The 2D laser 
provided is the most expensive component of the project and was being loaned 
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for the groups use. The group estimates total cost of the project to be around 
$7,000 .00 total. Table 1 outlines the projected costs of various components of 
the project and exactly what has and has not been acquired. 

2.3. Timeline 

2.3.1. January 
 
We began the creation of the 3D laser range finder by preparing our 
environment. We built and installed the operating system for the raspberry Pi. 
Once we have installed the operating system began creating our basic hardware 
access functions. We created small callable functions that each can access the 
GPIO pins and provide methods to listen or provide output. We installed and 
configured the library for the Hokuyo laser scanner and created functions that are 
able to access and utilize it.  
 
The rotation of the laser scanner was the next part we will needed to create. This 
included 3D modeling of the part, printing the part on a 3D printer and mounting it 
to our motor. This provided us with a prototype while we create the software.  

2.3.2. February 
 
We created the necessary functions that will utilize the Point Cloud Library. This 
required us to modify the code in order to run it on our processor. Then we built 
the libraries and installed them into our system. Once we had the libraries 
installed, we will need to create our more advanced methods that combine some 
of our functions. At this point we hoped to be able to take test data and pass it 
through our system and provide some sort of resemblance to our output data. 
However, we were unable to do so at this point. 
 
Once the basic functions have been created, we began the creation of the output 
API. This will require the creation of many functions for communication. We 
hoped to create listeners that will wait for requests, create input and output 
buffers, and create encoding and decoding classes that will be used. The 
different actions will basically be “scripted” mechanisms that will respond to the 
different action codes. This should have all adhered to our new communication 
protocol. 
 
The parts we ordered had come in at this point and we built prototype circuits for 
testing. We tested our system so that each of the components will function 
correctly. 

2.3.3. March 
 
We now focused on the software generation and output. The software that we 
needed to create will combine all of the different functions and act as our central 
control system. We hoped be able to have all the software completed by this 
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time, however it was not. Once all systems were verified to be working, we 
ordered the PCB’s made for our power regulation. We also started the final 
construction of the system and prepare it for actual deployment. 

2.3.4. April 
 
We completed the final hardware assembly with our PCBs and mount all 
necessary hardware. This will be the finished product, however, for the next 
month, we tested, corrected, tested, adjusted, tested, modified, tested, verified, 
tested, and finally tested. We made sure everything is working to our required 
specifications and as time permitted, we were able to add some additional 
mechanisms that will assist in demonstrating this project. 
 

Title Begin 
Date 

End Date Sep 
'13 

Oct 
'13 

Nov 
'13 

Dec 
'13 

Jan 
'14 

Feb 
'14 

Mar 
'14 

Apr 
'14 

 
Project Document 

 
9/12/2013 

 
9/17/2013 

 
x 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Research 
 
 
 

 
 
 

x 
 

 
x 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Laser Sampling Controls 9/17/2013 9/24/2013  
x 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Laser Interfacing (MCU) 9/17/2013 9/24/2013  
x 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Mechanical Control 
System 

9/17/2013 9/24/2013  
x 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

PC Interfacing 9/17/2013 9/24/2013  
x 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Debugging Interface 9/25/2013 10/15/2013  
 
 

 
x 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Software Library Research 9/25/2013 10/15/2013  
 
 

 
x 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Repository Setup 9/25/2013 10/15/2013  
 
 

 
x 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Camera Perspective 
Transformation 

9/25/2013 10/15/2013  
 
 

 
x 
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Begin Date End Date Sep 

'13 
Oct 
'13 

Nov 
'13 

Dec 
'13 

Jan 
'14 

Feb 
'14 

Mar 
'14 

Apr 
'14 

Design 
 

10/16/2013 
 

12/31/2013 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Tilting Mount  
10/16/2013 

 
10/31/2013 

 
 
 

 
X 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

PCB Design  
12/1/2013 

 
12/31/2013 

 
 
 

 
 
 

 
 
 

 
X 
 

 
 
 

 
 
 

 
 
 

 
 
 

Driver Software  
10/16/2013 

 
12/31/2013 

 
 
 

 
X 
 

 
X 
 

 
X 
 

 
 
 

 
 
 

 
 
 

 
 
 

PC Software  
10/16/2013 

 
11/30/2013 

 
 
 

 
X 
 

 
X 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Electrical Components  
10/16/2013 

 
12/31/2013 

 
 
 

 
X 
 

 
X 
 

 
X 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

Build 
12/15/2013 4/30/2014  

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
PCB Board 

 
2/1/2014 

 
3/31/2014 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
X 
 

 
X 
 

 
 
 

PC Driver Board  
12/15/2013 

 
1/15/2014 

 
 
 

 
 
 

 
 
 

 
X 
 

 
X 
 

 
 
 

 
 
 

 
 
 

PC Software  
1/1/2014 

 
2/28/2014 

 
 
 

 
 
 

 
 
 

 
 
 

 
X 
 

 
X 
 

 
 
 

 
 
 

Laser Scanner  
12/15/2013 

 
1/31/2014 

 
 
 

 
 
 

 
 
 

 
 
X 

 
X 
 

 
 
 

 
 
 

 
 
 

 

 

Testing 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
Continuously 

 
12/15/2014 

 
4/30/2014 

 
 
 

 
 
 

 
 
 

 
X 
 

 
X 
 

 
X 
 

 
X 
 

 
X 
 

 

 
Table 1 Timeline 

 

3. Research 

3.1. Similar Proposals and Projects 
 
There have been many attempts at utilizing the Hokuyo UTM-30LX LIDAR as a 
low cost full 3D laser scanner. This section will highlight systems implementing 
3D laser designs and present different methods of adding an extra dimension to 
the normal 2D data. Many of the technologies presented are available as 
commercial products wherein teams of professional engineers have carefully and 
meticulously sought after efficient solutions. It was the goal of this project to 
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accumulate the best approaches, techniques, and ideas of those available in 
order to provide the best solution in the end design. 

3.1.1. 3DLS-Ks Continuous Rotation 
 
One of the first implementations uncovered by the group is the Fraunhofer built 
3DLS-Ks continuous rotation sensor. This is a fully embedded 3D laser scanner 
leveraging the same Hokuyo UTM-30LX sensor and comes packaged with a 
software suite and API for implementation. This product is sold commercially as a 
standalone 3D sensor for various automated applications. The 3DLS-Ks 
implements a method of mounting the 2D sensor on its side and placing it on a 
continuously rotating platform in order to generate full 3D scans. This method 
was also observed to offer the advantage of allowing the mounting point of the 
rotational axis to be the same as the scanning axis.  
 
 

 
Figure 2 3DLS Continuous Rotation 3D-Laser-Scanner 

 
This technique effectively minimizes overall error in the 3D reconstruction from 
the 2D scans as the scans are all referencing the same axis of revolution. The 
group identified this as an effective design goal and specifically sought after other 
designs which implemented this same approach. This product is highlighted by 
many weather-proof connectivity options on the rear of the device and is an 
entirely weather resistant design. This is a trait highly favorable to the group’s 
proposed design and will be a good reference on how to achieve proper sealing 
of the final system for outdoor use. 
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3.1.2. Dynamixel Hokuyo Coupling 
 
Many advantages of this open-source design were observed in that the structure 
is based on a simple premise of rotating the laser in a manner that keeps the 
focal point of the scans in line with the point of rotation much like the Fraunhofer 
design. The entire assembly was also 3D printed which enables lower costs in 
system production. While rotating the 2D scanner in clockwise and anticlockwise 
motions a full 3D scan can be generated in a timely manner. The heart of the 
design is based on the use of a serial interfacing servo motor. Such a design 
would make motor interfacing and control much simpler than other types of 
motors and would also enable motor feedback to the system in use. 
 

 
Figure 3 3D Rotating Design 

 (Reprinted with permission through fair use policy) 

 
 

3.1.3. UnoLaser 30M135Y 
 
The Uno Engineering laser is of a pitching implementation whereby the laser 
sensor is mounted on a platform that rotates the sensor up and down sweeping a 
plane directly in front of the assembly. The overall design of this system is 
relatively more complicated in that to attempt to set the axis of rotation to that of 
the receiving point of the laser without obstructing the overall 2D view adds some 
complexity. The company’s design uses a C shaped channel affixed to a carriage 
system at a fixed distance from the sensor to allow for the appropriate tilting 
reference point. The advantage of the tilting approach was immediately obvious 
to the group as the range of immediate coverage is immensely beneficial to the 
intended application.  
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Figure 4 Uno Engineering UnoLaser 30M135Y 3D LIDAR 

 (Reprinted with permission through fair use policy) 
 

3.2. Laser Sensors (LIDAR) 
 

LIDAR (Light Detection and Ranging) is a technology which measures 
distances remotely by illuminating an object with a laser and analyzing the 
reflected light received back. The basis for all specifications and requirements of 
the project rely heavily on the technology and capabilities of the LIDAR sensor 
used and thus choosing the correct 2D sensor is crucial for the accuracies 
necessary. The group considered many performance metrics in choosing a 
LIDAR but the main characteristics scrutinized were: physical dimensions, 
scanning performance, power usage, and device interfacing. The following 
section outlines LIDARs considered and their specifications. 

3.2.1. Hokuyo PBS 
 
The Hokuyo PBS is a small LIDAR, at a size of 60mm x 75mm x 70mm, that 
features 4 mounting holes on its base and indicator LED’s on its face. The device 
weighs in at 500g. The device has a scan angle of 180 degrees, scans at a rate 
of 1 revolution per 100 milliseconds and a scan distance of 10m. It uses an infra-
red LED as light source. Angular resolution was not provided by the 
manufacturer. Scan parameters may be adjusted by RS-232 connection. It has 
been noted that the device may malfunction when receiving strong light or 
sunlight. The device uses a 24V DC source with maximum power usage of 12W. 
A single cable is used for both power and data, with no external switches. All 
data is transferred using a serial connection. The Hokuyo PBS has a small 
physical footprint and a low amount of power consumption. Unfortunately, the low 
maximum scan distance, lack of external control, usability outside and lack of 
modern data connection make it less than ideal for our usage. 
 



11 

 

(Permission Pending) 

 
Figure 5 Hokuyo PBS 

(Used with permission) 

3.2.2. Hokuyo URG-04LX-UG01 
 
The Hokuyo URG-04LX-UG01is a small LIDAR at a size of 50mm x 50mm x 
70mm, with 4 mounting holes on its base and weighs in at a mere 160g. The 
device has a wide scan angle at 240 degrees, a max distance of 5.6m and is 
able to scan every 100ms with an angular resolution of ~0.36 degrees. It uses a 
Semiconductor laser diode as light source.  Scan settings can be changed using 
the USB Mini connection located at the back of the device. It is noted that the 
device is designed only for indoor applications. The device uses 5V DC drawn 
from the USB connection and has a maximum power usage of 2.5W. Data is 
handled through the USB connection using the SCIP 2.0 protocol. The Hokuyo 
URG-04LX-UG01 has a small physical footprint, minimal power consumption, 
and uses the SCIP protocol we will use for our design. However, due to the long 
scan time, low scan distance, and lack of outdoor usage, it is not within our 
design specifications. 
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Figure 6 Hokuyo URG-04LX-UG01 

(Used with permission) 
 

3.2.3. Hokuyo UBG-04LX-F01 
 
The Hokuyo UBG-04LX-F01 has a physical size of 60mm x 75mm x 70mm, with 
four mounting holes on its base and a weight of 260g. It has a scan angle of 240 
degrees, a maximum scan range of 5.6m with a scan time of 28ms and angular 
resolution of ~0.36 deg. It uses a Class 1 Semiconductor laser diode as a light 
source. Scan settings are adjustable through either an RS-232 serial connection 
or the onboard USB. This device is designed for indoor application. It uses a 12V 
DC connection for power and has a maximum power consumption of 4.5W. Data 
and power are handled through the connected USB cable, with data transferred 
using the SCIP 2.0 command system. The Hokuyo UBG-04LX-F01 has medium 
power consumption, great scan time, scan distance and angular resolution. 
However, the device is unable to function in direct sunlight and cannot reach our 
required scan distance. 

 
Figure 7 Hokuyo UBG-04LX-F01 

(Used with permission) 
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3.2.4. Hokuyo URG-04LX 
 
The Hokuyo URG-04LX has a physical size of 50mm x 50mm x 70mm, a weight 
of 160g and four mounting points on the bottom. It has a scan angle of 240 
degrees, a maximum scan range of 4m with a scan time of 100ms and an 
angular resolution of 0.36 degrees. It uses a class 1 Semiconductor laser diode 
as a light source. Scan settings are adjustable through the onboard USB or RS-
232 connection. The device is designed for indoor usage. It uses a 5V DC 
connection and has a maximum power consumption of 2.5W. Data is transferred 
through the USB via SCIP V1.1 / 2.0 or an NPN open collector. The Hokuyo 
URG-04LX has low power consumption with good scan angle and resolution. 
However, the maximum scan distance and scan time are not up to what is 
necessary to complete the project. 
 

 
Figure 8 Hokuyo URG-04LX 

(Used with permission) 
 

3.2.5. Hokuyo UTM-30LX 
 
The Hokuyo UTM-30LX has a physical size of 60mm x 60mm x 85mm, a weight 
of 210g and four mounting points on the bottom. It has a scan angle of 270°, a 
maximum scan range of 60m with a scan time of 25ms and an angular resolution 
of 0.25°. It uses a class 1 Semiconductor laser diode as a light source with a 
wave length λ=870nm. Scan settings are adjustable through the USB connection. 
The device is designed for indoor/outdoor usage with an IP rating of IP64. It uses 
a 12V DC connection and has a maximum power consumption of 12W. Data is 
transferred through the USB via SCIP V1.1 / 2.0 or an NPN open collector. The 
Hokuyo UTM-30LX has low power consumption with good scan angle, resolution, 
and range. 
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Figure 9 Hokuyo UTM-30LX 

(Used with permission) 
 

3.2.6. Comparison of Lasers 
 
Each of the sensors listed in section 3.2 have many different pros and cons. The 
table below highlights each sensor and the key metrics used by the group in 
selection for the system. 
 

Sensors Hokuyo 
PBS 

Hokuyo 
URG-
04LX-
UG01 

Hokuyo 
UBG-
04LX-F01 

Hokuyo 
URG-04LX 

Hokuyo UTM-
30LX 

Light 
Source 

IR LED 
(λ=880nm) 

Laser 
Diode 
(λ=785nm) 

Laser 
Diode 
(λ=785nm) 

Laser 
Diode 
(λ=785nm) 

Laser Diode 
(λ=905nm) 

Application Indoor Indoor Indoor Indoor Indoor/Outdoor 

Accuracy N/A ±30mm ±10mm ±10mm ±50mm 

Angular 
Resolution 

1.8° 0.36° 0.36° 0.36° 0.25° 

Scanning 
Range 

178.2° 240° 240° 240° 270° 

Detecting 
Range 

0.2m to 3m 60mm to 
1000mm 

20mm to 
5600mm 

60mm to 
4095mm 

0.1m to 30m 

Scan Time 100ms/scan 100ms/scan 28ms/scan 100ms/scan 25ms/scan 

Power 24v DC 5V DC 
(USB) 

12v DC 5V DC 
(USB) 

12v DC 

Weight 500g 160g 260g 160g 370g 

IEC Rating IP64 IP64 IP40 IP64 IP64 

Table 2 Laser Sensor Comparison 
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Reviewing the specifications of the different offerings from the Japanese based 
company Hokuyo revels few laser sensors within spatial and weight restrictions 
for the system as outlined in 2.1. At 500 grams the Hokuyo PBS shows the most 
bulk out of all sensors found. The detection range and angular resolution is 
decent but the limitation of the sensor to indoor applications would not work in a 
system required to operate outside. The other four sensors all occupy about the 
same space but vary widely in detection ranges. With longer ranges being 
preferred the group was able to eliminate the Hokuyo URG-04LX-UG01 and 
URG-04LX as candidates since neither can go 5 meters out. From the remaining 
two sensors the group decided to stay with the Hokuyo UTM-30LX as it has 
superior range, resolution, and most importantly is the only sensor that works in 
outdoor settings with minimal degradation in accuracy. This sensor is also being 
donated by the club for use and thus eliminates a lot of extra material costs 
needed to ascertain a different laser scanner.  

3.3. 3D Scanning Implementations 
 
Having chosen a 2D laser scanner research into different approaches to adding 
in a third spatial dimension to the data began. The Hokuyo UTM-30LX scanner 
needed to be revolved about some axis to obtain required output. Careful 
research into the three different possible configurations will enable superior 
results for real-time use. With the goal of implementing this axis of rotation at the 
point of measurement of the scanner, individual analysis of each technique will 
prove beneficial in examining potential design difficulties. Exploration of each 
arrangement will reveal not only impending downfalls but also advantages to 
each technique for the intended robotics application. Optimization of the data will 
be crucial for image generation as frame rate will be critical in a moving platform. 
The available scanning methods are referenced by the naming scheme of rolling, 
pitching, and yawing scans. These methods are in reference to the lasers 
coordinate frame with the convention of positive x being forward out in front of 
the sensor, positive y being to the right of the sensor and positive z being down 
below the sensor.  

3.3.1. Rolling Scan 
 
The rolling scan implements a horizontal sweep and rotates the sensor around a 
vertical axis (x axis) coincident to the center of the sensor. By rotating the sensor 
in this method there is a single focus point in the front of the sensor. The density 
of measurement data collected by the sensor in this configuration is directly in 
front of the sensor. However the majority of the initial scan coverage is offset 
from the center of the device to either side towards the ‘peripherals’. Full forward 
coverage is only possible via full 180 degree rotations. A system which 
implements the rolling scan methodology while retaining a revolution about the 
origin of scans is relatively straight forward. Since the mounting point of motion 
can be placed behind the sensor without obstruction of the raw scanning data. 
With the mounting system so close to the majority of the weight in the assembly 



16 

 

lower torque motors become more viable and can therefore lower overall system 
costs. The laser scanner chosen does not have a full 360 view and thus the small 
window behind the sensor provides enough space for mounting motors and 
electronics without hindering data capture.  
 

 
Figure 10 Rolling Scan Coverage 

3.3.2. Pitching Scan 
 
Pitching scans implement a horizontal sweep like the rolling scan but pitches the 
sensor around a horizontal axis coincident to the center of the sensor. Here the 
highest density of points is focused on the extremes of the left and right side. 
Coverage directly in front of the device is sparser but more uniform. The pitching 
technique does not require full rotations for immediate frontal coverage as it was 
in the rolling scan. Implementation of this technique will prove more difficult given 
the limited number of mounting solutions on the sensor itself. Material costs for 
the mounting system will also be higher than that of the rolling scan as extra 
brackets and gears will be needed to rotate the sensor at a further distance. 
Considering the physical design requirement of two axis mounting availability it is 
difficult to provide ample mounting without sacrificing space and weight. Rotation 
about the middle of the sensor with this implementation would require a larger 
assembly than the rolling technique but has a more desirable immediate 
coverage area. Demands on torque for the motor used are much greater here 
also since the motor would need to be placed either above or below the laser to 
generate appropriate rotations. The motor would be mounted and therefore need 
to move the assembly at a greater distance away than in the rolling method 
where it could simply be placed directly behind the sensor. The pitching 
assembly is therefore the best option for fast operation and immediate coverage 
but incurs the greatest materials cost and design complexity. 
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Figure 11 Pitching Scan Coverage 

3.3.3. Yawing Scan 
 
The yawing scan utilizes a vertical sweep and implements a vertical axis of 
rotation central to the center of the sensor.  There are two possible orientations 
of the sensor for coverage in this configuration with the laser either on its side or 
on its back. A sideways orientation is seen as more favorable for robotics as it 
can give the greatest immediate view to the platform. In applications requiring 
more than 180 degrees field of view this method would be the only viable option. 
To accomplish greater than 180 degree scans additional hardware would be 
required to manage a cables on a continuous rotating platform. Motor selection 
would also be limited to those capable of achieving this continuous state. 
Measurement densities of the yawing scan are heavily focused towards the top 
and bottom with greater uniformity around the circumference of the scan. 
Operation of the yawing scan closely resembles that of the pitching scan except 
that the rotation controls the horizontal field of view rather than the vertical. 
Construction of a rotating assembly for this technique has a difficulty between 
that of the pitching and rolling schemes with a cost reflecting that. With the 
sensor on its side or back the rotating apparatus can be built without significantly 
occluding the laser because of the window on the back of the sensor. Without the 
need for additional hardware, mounting flexibility of such a device would be more 
dynamic than in the pitching scheme. Numerous potential applications of this 
sensor make selection of the horizontal rather than the vertical field of view 
favorable because resolution is more easily relinquished for faster 3D imaging. 
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Figure 12 Yawing Scan Coverage (Side Mount) 

3.3.4. Comparison of Scanning Implementations 
 
Addition of an extra dimension to the 2D system is possible by rotating the laser 
in three different ways (axes). The rolling employment simplifies overall 
construction as mounting at the axis of measurement can be done without 
obstruction to the sensor. Placing the mounting point of the driving assembly 
behind the sensor will accomplish both goals while also making the overall 
design smaller and lighter. A rolling system however would require full 180 
degree rotations in order to fully cover the area directly in front of the assembly. 
Due to the importance of obstacle avoidance, and therefore immediate range 
data, this method is seen as less favorable to implement. Yawing scans fix some 
of the measurement density inconsistencies of the rolling scan by placing the 
sensor on its side or back while still allowing for a centered rotational axis. It is 
normally very difficult to place the sensor on its side to rotate it 360 degrees. 
Obstructions from the cables on the sensor itself could cause snags and other 
difficulties. Certain design choices could help to eliminate this problem by limiting 
the range of the moving assembly so as to avoid this issue. Since the 
requirements specify a minimum of 160 degree horizontal field of view, a smaller 
rotational range would no longer interfere physically with the sensor. Pitching the 
2D laser generates a measurement density similar to that of the yawing 
technique offering uniformity and full frontal coverage. This technique proves 
difficult however at implementing rotation at the point of measurement without 
obstruction. Given the point of rotation would physically be above the sensor 
itself unneeded brackets and gears would need to be designed in order to 
accomplish this goal.  
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3.3.5. Open Loop Control 
 
In an open loop control system, only the current state and input are taken into 
account when driving the system. This control system is typically used in simple 
processes, as there is no feedback to see if the output matches the intended 
goal. In the following section, we discuss the viability of an Open Loop Control 
system for this project by taking into account each subsystem and the 
information it receives and transmits.  
As the most critical part of the project, the LIDAR unit must be considered first. In 
terms of input and output, the LIDAR units we have researched are almost 
identical and will therefore be discussed as a whole instead of individually. The 
main purpose of a LIDAR unit is to sweep an area with a laser, find a distance 
and transmit to whatever is listening. This is done without any response from the 
listening device. Each 360 degree rotation of the LIDAR takes a specific amount 
of time, making it possible for LIDAR and motor to work in tandem without the 
need for a sync pulse. While the LIDAR can be configured to only scan certain 
areas by changing the scan start angle and scan end angle, these settings are 
not modified while the system is in use. Given that any input to the LIDAR is set 
prior to actively using the device, it is entirely possible for a LIDAR unit to exist in 
an open loop control system as it needs no feedback. 
Next, we examine the unit that turns the 2D planes acquired by the LIDAR into a 
full 3D image, the motor. As there are several categories of motor we consider 
for this project; Stepper motors, Servo motors and DC motors with encoders; we 
will discuss them by their categories instead of motors as a whole.  
The stepper motor is capable of taking an dividing circular rotation into a 
specified number of steps, thus able to rotate at a constant distance per step. 
This is done with a number of electromagnets on the outer rim of the motor. To 
drive this motor, each electromagnet is given power in sequence to cause 
motion. As such, this fits well with the concept of an open loop control system as 
the motor is able to create a desired output given only its current state and 
correct input. A stepper motor can be programmed to repeatedly move from a 
start angle to an end angle at a predetermined rate, allowing for more than 
enough time for a LIDAR sweep at each step.  
A servo motor is a good example of the type of motor that is not usable in an 
open loop control system. Servo motors operate using feedback to correct 
performance, constantly monitoring mechanical position. This type of motor is 
perfect for a closed loop control system, and it is discussed length in the 
following section.  
DC motors operate by electrically charging a rotating armature inside of a 
magnetic field, thus controlling the speed of the rotations by the current supplied 
to the armature. A DC motor is a strong choice for projects requiring a large 
amount of torque or speed, as they can be started at high power by supplying a 
large amount of impedance with the DC voltage. As DC motors move at a rate 
relative to the impedance, an encoder must be added for there to be any 
capability for specific motion. An encoder converts the position of a motors shaft 



20 

 

into code, allowing for feedback. Since a DC motor cannot move precisely 
without feedback, it is not usable in an open loop control system. 
In order for there to be any interaction between a LIDAR unit and motor, we must 
use a microcontroller to receive and interpret LIDAR data as well as to drive our 
motor system. With a stepper motor mounted correctly to a LIDAR unit, this is 
entirely possible in an open loop control system as neither the stepper motor nor 
the LIDAR unit require any feedback. The final piece of this system is the 
external display, which takes the interpreted data from the microcontroller and 
converts it into an image understandable to the human eye. The display system 
requires no feedback as it uses a unidirectional data flow. The basic block 
diagram below illustrates a possible open control loop system for this project. 
The LIDAR unit and stepper motor are connected to work in sync, but are each 
part of a different control path. 

 
Figure 13 Basic Open Loop Control Path 

3.3.6. Closed Loop Control 
 
In contrast to open loop control, closed loop control takes current state, input and 
feedback into account to calculate the correct output. As such, we must discuss 
the way our LIDAR, motors and microcontroller, will fit into this control system. 
We discuss LIDAR units in general in terms of control, as our chosen devices are 
highly similar in their input and output. LIDAR is a great tool for a closed loop 
control system as not only does each 360 degree sweep take the same amount 
of time, but there is a 1ms pulse sent at the moment each sweep is completed. 
This sync pulse can be used to easily drive a motor for once a sweep is 
completed, the LIDAR needs to be rotated to scan a different angle. This is a 
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very important fact, as this pulse can be used to drive multiple events in different 
systems. LIDAR units do not take in any feedback, however.   
 
The stepper motor is the perfect motor for an open control system as it provides 
a guaranteed motion given power to its electromagnets in the correct sequence. 
While this is a strong trait in any motor, in a closed loop control system feedback 
is necessary. It is possible to add an encoder to the stepper to measure the shaft 
location and ensure perfect angular rotation to allow for feedback, but this is 
overkill. While a stepper motor allows for perfect scan data storage as each step 
is the same distance, without proper feedback it is not a viable option in a closed 
loop control system.  
 
The servo motor typically operates by taking feedback on either the position or 
speed of the motor using an encoder. This is perfect for a closed loops system, 
as it allows us to continually have information on the location of motor, and the 
location of the LIDAR unit mounted to it. The servo motor is used in the basic 
closed loop control system detailed at the end of this section. 
 
A DC motor operates using a rotating armature inside of a magnetic field, where 
the speed of the motor can be controlled by the amperage provided to the 
armature. As such, there is no inherent control over the motors location. To fix 
this problem, an encoder is typically added to send feedback on the position of 
the motor shaft. A DC motor is a viable choice within a closed loop control 
system, although the method in which it rotates is less than opportune for the 
type of motion we will require for LIDAR operation.  
 
As in the open loop control system, the microcontroller is the core unit of this 
project. It is impossible to use the other subsystems without a controller, as the 
controller drives the motors, while taking in and interpreting LIDAR data before 
sending it to the external display system. LIDAR position feedback is provided 
through either a servo or DC motor with encoder, allowing for the LIDAR scan 
data to be stored with respect to current motor location.  
 
The external display system typically reads computed LIDAR data from the 
microcontroller and interprets it in a way that allows the human eye to understand 
the distances it has recorded. Usually the microcontroller and display system 
each interpret data independently, once the microcontroller has finished its 
computations they are sent to the display for it to begin translating distance into 
color. Since the display is doing calculations of its own, it is possible for errors to 
arise or for data to be missing. As such the display can request feedback from 
the microcontroller for a scan still in memory.  
 
A basic block diagram for the LIDAR system is shown below in figure 14. It 
shows the flow of data to and from the microcontroller, as well as the feedback 
for each subsystem. Note the LIDAR unit does not receive feedback, but instead 
transmits data as well as a sync pulse for timing. 
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Figure 14 Basic Closed Loop Control Path 

3.4. Motor Control 
 
The following section outlines the three different motor control options we have 
taken into consideration for this project as well as a section on encoders, a 
necessary part if a closed loop system is desired. The basic operation method of 
each motor type is explained in detail before the individual motors specifications 
are discussed. A table is provided at the end of each motor control option for 
quick reference. 

3.4.1. Micro stepping 
 
There are a few options for creating the motion needed for our tilting platform. 
One of the options is to use a stepper motor. Using a micro stepping driver, we 
could be able to control our stepper motor that tilts our laser. The stepper driver 
is used to accurately rotate the stepper motor in order to have precise 
movements. Since we rely on our angular measurement for reproduction of the 
3D image, we will need to insure that the angles are accurate. 
Stepper motors work by providing a magnetic fields on different poles inside the 
motor. The rotation is done by alternating the power put through each of the 
poles and creating a rotational motion. Utilizing this design, the different poles 
can be accurately controlled so that the shaft of the motor only turns a single, 
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constant, distance. This allows stepper motors to be controlled to turn degree by 
degree. 
The cost of the stepper is attractive due to its lower cost. One downside, 
however, to using the stepping controller is that the stepper and driver do not 
provide feedback to our system.  
 

 
Figure 15 SM-42BYG011-25 Stepper Motor  

(Reprinted with permission from Creative Commons License) 

 
 

3.4.2. SM-42BYG011-25 Stepper Motor 
 
The SM-42BYG011-25 stepper motor can provide a decent accuracy for our 
project. This motor works on 12V at a rated current of 0.33A. This bipolar motor 
can be driven by micro stepping driver to allow for accurate controls. The 
minimum rotational angle for this motor is 1.8 degrees. Although it is not a single 
degree or less rotation, we do not need to have a very small degree of rotation 
for a high speed scanning. If we were to use this for even higher resolution 
scanning however this proved to not be suitable. 

3.4.3. 42BYGHM809 Stepper Motor 
 
The 42BYGHM809 stepper motor can provide a very good accuracy. This motor 
works on 3V at a rated current of 1.7A. This would require us to step down the 
voltage to utilize this motor. This bipolar motor can be driven by micro stepping 
driver to allow for accurate controls. The minimum rotational angle for this motor 
is 0.9 degrees. This sub 1 degree rotational control would allow for much higher 
resolution scanning. Even though this may not be utilized for higher operation, 
this would make our project more expandable than its original design and could 
be used for other applications such as motion detection, long range vision, or 
SLAM. 
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3.4.4. A3967 Micro stepping Driver 
 
The A3967 micro stepping driver is controlled using a high pin for stepping and a 
high pin for direction. It will run off of our 12V power rail in order to power. It can 
also operate up to 750mA. The motor hooks up to the driver using 4 wires, A & B 
in and A & B out.  These correspond with the 2 phases in the stepper motor and 
control the stepper motor motion. We would be developing the software that 
controls the stepping of the motor in this case. This driver works on the rising 
edge of a controlled clock that corresponds directly with the motor control. It does 
not utilize a serial system for control or feedback. Therefore, we would need to 
manage the step counting within our program. 

3.4.5. STMicro's L6470 Stepper Motor Driver 
 
The STMicro's L6470 stepper motor driver is more robust driver than the A3967. 
The L6470 can operate in the range of 8-45V, which includes our 12V rail and 
can operate up to 3A. This would provide the ability to have a much larger power 
motor. Communicating to the stepper controller is done using an SPI link. This 
serial link is more stable and allows for full duplex operating. This means that we 
can send it commands to move as well as get feedback returned to us about its 
operating modes, speed, and location. It manages this information using 
registers onboard the driver. Utilizing this driver may prove beneficial for us for 
stability; however, we will also have to take into account the additional points of 
failure that could occur. Because this driver uses the SPI interface, we would 
need to have a specialized clock signal for communication. This takes away from 
our existing number of pins and may require us to utilize additional shift registers. 
This could lead to delays and possible failures. 

3.4.6. Servo 
 
The other option is to use a servo. The servo moves differently than the stepper 
as it is a more fluid movement and it will rotate until it has reached its position. 
This can lead to slipping and inaccurate results. However, servos will provide 
location feedback by using an encoder in order to provide the exactly location 
down to the degree. This allow for an extremely accurate results since the 
movement is not geared and depends on the encoder resolution used. Most 
servos, however, do not allow for full rotation and can only alternate direction 
within a limited range. This is fine for our application since we will be unable to 
rotate a full 360 degrees. 
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Figure 16 Hitec HS-805BB Servo Motor 

(Reprinted with permission from Creative Commons License) 

 

3.4.7. Hitec HS-805BB Servo Motor 
 
The Hitec HS-805BB servo motor provides 180 degrees of rotation. This servo 
motor works on 6V, so the voltage will have to be stepped down from our 12V 
rail. The maximum operating current of the servo is 800mA. This servo can 
provide 343 Oz-in of maximum torque, so moving the laser mechanism would not 
be an issue. 

3.4.8. Dynamixel MX-28T Robot Actuator 
 
The Dynamixel MX-28T Robot Actuator is another such servo that can provide 
an accurate movement. It requires serial communication to send it position data 
and also to receive position data back from the servo. It uses a potentiometer in 
order to provide the encoded position information. This servo provides a 
resolution of 0.088 degrees. This level of accuracy would allow for our application 
as well as the numerous others for high resolution 3D scanning. This servo also 
has 360 degrees of rotation to allow for a full field of vision. This servo has a built 
in driver that allows for the serial communication. It monitors the position, the 
load, the input voltage, and the temperature. The communication speed can be 
adjusted between 7343 bps to approximately 3Mbps. After testing we found that 
we were able to utilize the highest speed for communication with little error. This 
servo works on 12V and has a maximum operating current of 2400mA. Using this 
amount of power would require us to make some sort of protection circuit that is 
more robust than other motors may have required, but was worth it since this 
gave the most options. 
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3.4.9. DC Motor Control 
 
DC motors allow you to provide an amount of regulated power to move a specific 
distance. This is done by rotating a charged armature in a magnetic field, where 
the speed is dependent on the amount of current provided. These types of 
motors are extremely cheap, but they are not accurate. The DC would prove 
viable if an encoder and/or limit switches are used. 
 

 
Figure 17 M-12FN20-100-06120 DC Motor 

(Reprinted with permission from Creative Commons License) 

 

3.4.10. KM-12FN20-100-06120 DC Motor 
 
The KM-12FN20 DC motor could provide us the movement of the laser at a lower 
cost. The motor runs on 6V and would have to be stepped down in order to 
operate on our 12V rail. The maximum operating current of this DC motor is 
135mA. The DC motor could be used if we deploy the use of a few different 
components. An optical, rotary, or potentiometer encoder could provide the 
rotational information of the DC motor shaft. With this information, we could then 
adjust the voltage to alter the speed and location of the motor. Also, utilizing limit 
switches would prevent operation out of bounds of our system. This method may 
require more work on our part, but would reduce the overall cost. 

3.4.11. GB37Y3530-12V-83R DC Motor 
 
The GB37Y3530 DC motor has a built in rotary encoder. This is a 12V DC motor 
and can provide location feedback. The rotary encoder provides 64 counts per 
revolution on the shaft of the motor. this would provide a degree unit of 5.6 
degrees. This would not be incredibly detailed, but could run the real team 
mechanism of the 3D laser scanner.  The minimum voltage for this motor can go 
as low as 1V and as high as 12V and the maximum operating current would be at 
0.4A. This is not a high powered motor and after testing may prove that a 
gearbox may be necessary in order to provide ample amount of force. 
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3.4.12. Encoders 
 
Encoders provide feedback of a motor to a circuit. Encoders are used to monitor 
the motion of the motor’s shaft and provide a method that reports feedback of 
that motion. We will need to discuss which of the encoders we will use if we 
decide to use a DC motor in our application. Even though servos come with 
motor feedback, there may be a need for a redundant system to measure and 
test the given motor feedback. 
 

 
Figure 18 E6A2-CS3E Rotary Encoder 

(Reprinted with permission from Creative Commons License) 

 

3.4.13. E6A2-CS3E Rotary Encoder 
 
This rotary encoder allows us to attach it to any motor and provide motor 
feedback. This type of rotary encoder uses a potentiometer to measure motion. It 
works on between 5V and 12V, so it would be able to use our main 12V rail. The 
maximum revolution per minute is 5000rpm. The feedback is provided by voltage 
levels. This would require us to write the code in our main application, or to 
create a separate board just for handing the information. 

3.4.14. A6B2-CWZ3E-1024 Rotary Encoder 
 
This rotary encoder provides feedback of the shaft of a motor using a different 
method than the previous encoder. This uses light in order to sense the motion of 
the motor shaft. This is encoder is called an optical encoder. It uses a disc that 
passes between a light and a sensor to sense the amount of rotation on the shaft 
of the motor. This encoder provides a resolution of 1024 light pulses per 
revolution. This equates to a 0.35 degree accuracy of motor rotation. This 
encoder works between 5V and 12V, so it will be able to run off of our 12V power 
rail. 
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3.4.15. Comparison of Motors 
 
Each of the motors that we have discussed has the ability to provide the function 
we need. We chose the type of motor that we will use in order to provide our 
motion. We needed the motion to be consistent and reliable in order to provide 
the scan. The DC motor will allow us to variably control speed and direction. This 
would be good at providing the fluid motion. However, accurate motion may not 
be easily acquired. The DC motor may hang if the weight of the laser scanner 
and platform and then the angle at which the tilt of the laser may not be constant. 
This could be remedied using a form of encoder. 
The stepper motors could also provide us the motion of the laser mechanism. 
Steppers can provide an accurate method of motion and can be controlled down 
to less than a single degree. Having the ability to get accurate movement is 
crucial to our calculations. However, the stepper motors do something that may 
not allow us to use them: they tick. Since the motor is controlled by telling each 
internal coil to electrify a certain amount, the motor actually does this by being 
fed many small values. This movement creates an unfavorable motion that is not 
smooth. It may be possible to use a motor controller to provide small enough 
‘ticks’ to give the illusion of fluid motion. Nevertheless, this was a possibility and it 
could provide accurate motion for our system. 
The servo will provide us a fluid movement much like the DC motor, however, the 
servo has a built in encoder. Servos are designed to be accurate. This will 
provide us with the fluid motion that is required to get accurate readings as well 
as being able to get feedback to verify the angle of the motor.  
The following table provides a compares the different motors that we have 
discussed. 
 

Part # Hitec 
HS-
805BB 

Dynamixel 
MX-28T 

SM-
42BYG011-
25 

42BYGHM809 KM-
12FN20-
100-
06120 

GB37Y3530-
12V-83R 

Motor 
Type 

Servo Servo Stepper Stepper DC DC 

Feedback Yes Yes No No No No 
Controller 

Needed 
No No Yes Yes Yes Yes 

Interface Pulse 
Voltage 

Serial 
Comm 

Pulse 
Voltage 

Pulse Voltage Direct 
Voltage 

Direct 
Voltage 

Resolution 1 0.088 1.8 0.9 ---- 5.6 
Torque 2.42N-

m 
2.54N-m 0.226N-m 0.48N-m 0.054N-

m 
0.29N-m 

Max Speed 0.14 
sec/60° 

0.079 
sec/60° 

---- ---- 120rpm 83rpm 

Max Amps 0.8A --- 0.33A 1.7A 135mA 0.4A 
Voltage 4.8V - 

6V 
12V 12V 3V 2V - 6V 1V - 12V 

Cost $39.95 $219.90 $14.95 $16.95 $15.95 $29.00 
Table 3 Comparison Chart of Motors 
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3.5. Microcontrollers / Computing 
 
The system architecture and specifications laid out in the previous section 
assumes an advanced computing solution to allow the system to be as fully 
embedded as possible. Generating full depth images and publishing them over a 
networking framework requires the system have ample memory (RAM) footprints 
as well as retain certain hardware I/O requirements. Certain capabilities of the 
outlined system have assumed inclusion of powerful open source libraries 
traditionally available only on desktop operating systems. Writing specific 
implementations of the functions necessary for 3d data visualization and image 
processing are outside the scope of this project. This eliminates most of the 
traditional commercial market of simple 8 or 16 bit microcontrollers. With the 
advent of newer 32-bit ARM based microcontrollers/SOC’s the term 
microcontroller has evolved in recent years. Desktop like development in the 
embedded space is now possible while still retaining all of the normal advantages 
of price, size, and power. Unlike traditional development board offerings of the 
likes of Arduino, microchip, or TI’s Launchpad some modern single board 
computer offerings have the advantages of actually allowing 
development/debugging onboard. These systems are ideal for the scope of this 
project as many run full desktop operating systems to enable faster and more 
refined development solutions. Most systems run the Linux kernel under popular 
Linux distributions such as Debian, Arch, and Ubuntu. These new single board 
computers are the reasons that projects such, as the one proposed, are now 
possible. 
 
The intent of the proposed system is to alleviate some computation on the end 
robotics application. By embedding the computation necessary to control the 
pitch, scans, and end translations the saved resources will greatly increase total 
system response. Building a system with these capabilities outside of a full x86 
architecture would prove difficult due to limitations on available system memory 
for storing scan data. Scans generated by the Hokuyo scanner come in at a rate 
of 40 Hz with 1080 points per scan. Each point can contain up to 4 bytes (64bit) 
of accuracy giving a total scan at this precision a size of at least 4320 bytes or 
just over 4 kilobytes (see SCIP 2.0 Hokuyo interface). Even utilization of the 2 
character encoding (16bit) will still use over a kilobyte per single scan interval. 
Given an average 3D vertical scan range of 45 degrees with 1 degree resolution 
each 3D scan would involve at least 90 kilobytes of raw scan storage. Most 
traditional 8 and 16 bit microcontrollers provide memory footprints of around a 
couple kilobytes. Some higher end 32 bit arm models will offer up to a couple 
hundred kilobytes of RAM however this would only allow for minimum accuracies 
of 2D data which would hinder the systems intent of high precision. With the 
advent of newer ARM based SOCs memory footprints have increased into the 
range necessary for a small embedded application. Many new offerings have 
come into the market including the Panda board, Raspberry Pi, Beagle board, 
and others which offer complete computing solutions within the required memory 
footprint. These boards offer the desktop like development desired while also 
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retaining low level I/O. The small footprint of these offerings will allow for a more 
streamlined tilting assembly and lower system power consumption. 

3.5.1. Raspberry Pi 
 
Released in early 2012 with lots of attention the Raspberry Pi is a small 
embedded computing platform with the design goal of bringing computing to 
students in all parts of the world. The two variants available of the Pi include a 
model A which has price of $25 which is outfitted with a 700 MHz ARM1176JZF-
S ARM 11 processor featuring the ARMv6 ISA. With 256 MB of ram this 
computing platform is capable of running full Linux operating systems enabling 
developers anywhere to program for a small price. With a power rating of 300 mA 
and a size of 3.37 inches by 2.125 inches this microcontroller capable board 
carries with it a small footprint and a lot of i/o potential. With a total of 8 GPIOs 
(General Purpose Input Output) pins, I2C busses, and full 3.3v and 5v rails this is 
a great platform for embedded systems. A bump of ten dollars to $35 will 
purchase what is called the model b version which sports similar specifications to 
the model a version with a few extra connectivity options in the added Ethernet 
and USB ports. The increased price also comes from a doubling of RAM system 
wide to 512 MB which is of major appeal to a system looking at storing tens of 
thousands of points from laser scans. While the disadvantage to this variant is a 
doubling of power consumption to upwards of 700 mA the total consumption is 
still less than 5 W. This makes the model b Raspberry Pi a very viable 
microcontroller option for the 3D system and would enable a smaller system 
footprint given its near credit card footprint. 

3.5.2. Beagle Board Black 
 
Similar to the Raspberry Pi, the Beagle Board Black is a low cost embedded 
computing solution, although a slightly higher cost. The board has a cost of $45, 
with a 1GHz TI Sitara AM3359 ARM Cortex A8 processor. With 512 MB of 
400MHz DDR3L RAM and a built in 2GB of storage, the Beagle Bone is able to 
run a multitude of different Linux versions. It uses more power than the 
Raspberry Pi A but less than the B, drawing from 210-460 mA depending on 
conditions of use, although it is almost the same size at 3.4” by 2.1”. It has a 
large amount of GPIO pins, with 65 pins available, and has both 3.3v and 5v 
rails. Unlike the raspberry pi, the only display option available is HDMI with audio. 
During the project we will be using our chosen board as an embedded system, 
so the single video output does not affect the board too heavily. The Beagle 
Board Black is a good step up from the Raspberry Pi in terms of speed, RAM and 
storage for the same size board. 

3.5.3. Panda Board ES 
 
The Panda board ES represents a higher end model for an embedded controller, 
as the newest model is currently $182, although the higher price is not 
unjustified. The Panda board ES comes with a Dual-core 1.2GHz ARM Cortex-
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A9 MPCore with SMP processor, which is a large step up from the raspberry pi 
and beagle bone with double the processing power. It also comes with a 
whopping 1GB or DDR2 RAM and an Imagination Technologies’ POWERVR 
SGX540 384MHz graphics core, which supports multiple OpenGL libraries and 
assists in image processing. The device has the largest physical footprint of all 
choices at 4.5” by 4”, with the most internal components as well. Unlike any of 
our other choices, the panda board has a built in Texas Instruments WiLink 6.0 
Module with 802.11 b/g/n and Bluetooth support which can be used to transmit 
data wirelessly to an external device, such as an Android smartphone running 
OpenCV to display our depth-images. As the Panda board EX supports Android 
and Ubuntu, this would allow for us to use very similar software architecture 
between devices. There are no GPIO pins built into the device, though the 
Generic Expansion Connectors allow for us to add pins if necessary. The device 
runs on a 5V DC connection and has a maximum power rating of 800mA and a 
minimum power rating of 170mA. The Panda board ES is a very powerful 
microcontroller, albeit a bit large and pricey. 

3.5.4. Comparison of Microcontrollers 
 
In order to compare the three microcontrollers we outlined in the previous 
section, we must first decide how to compare them. The most important factors 
to our project are overall clock-speed, available data storage space, power usage 
and size of the microcontroller. The following section discusses each point 
respectively. 
 
The fastest board researched is the Panda Board ES, with its impressive Dual-
Core 1.2GHz ARM Cortex-A9, it is over twice powerful as any other 
microcontroller we have taken into consideration. On the Single-Core side of our 
choices, we have the Raspberry Pi model B and the Beagle Board Black. Both 
boards are inexpensive compared to the Panda board EX, with the Raspberry Pi 
($35) only beating the Beagle Board Black ($45) by 10 dollars. The two boards 
are close in processor power, Beagle Board’s 1GHz TI Sitara AM3359 ARM 
Cortex A8 is only 300MHz stronger than the Raspberry Pi’s 700MHz 
ARM1176JZF-S.While both boards provide a decent clock speed for our project, 
a dual-core microcontroller is in a class of its own. Given the speed at which our 
LIDAR sensor will be sending large packets of data, a higher processor speed is 
very important for us to be able to view the information in real time without errors. 
However, a multi-core processor requires pipelined instructions in order to reach 
its maximum efficiency, which are more complicated in nature than those of a 
single-core processor. The Panda board ES is our highest microcontroller price 
point available, at over three times the price of the Beagle Board Black and over 
five times the price of the Raspberry Pi model B.  
 
Given the amount of data we will need to keep stored for quick access, our total 
RAM available is an important factor. The majority of data received from the 
LIDAR sensor will be stored in RAM, as will the results of any computations on 
said data; therefore it is well advised that we have enough RAM to store multiple 
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scans, as well as their visual representations. The Panda Board ES has the most 
RAM with 1GB, with the Raspberry Pi model B and Beagle Board Black having 
an available 512MB. While the amount of RAM is important to our incoming data 
and computation resultant storage, space is still needed for a basic operating 
system and our LIDAR code. The Beagle Board Black stands out in this situation, 
as it has 2GB of internal storage and a SD/MMC slot for external storage. Neither 
the Panda Board ES nor the Raspberry Pi have any internal storage, and require 
a SD card for their operating system and code space. While this seems like quite 
a hindrance, fast class 10 SD cards are available up to 64GB, which is far more 
than we will need and thus not a large issue overall.  
 
In terms of size, the Raspberry Pi and Beagle Board Black combined are still 
smaller than the Panda board ES. The Beagle Board Black is the smallest board, 
at only 3.4 inches by 2.1 inches it takes up only 7.14 inches2. The Raspberry 
takes an incredibly close second at 3.37 inches by 2.125 inches, it’s 7.16125 
inches2 area is only two tenths of a square inch larger, an almost insignificant 
amount. The two boards allow for the project to be as minimal in area as 
possible, as it is intended for a robot with specific size limitations. At 4.5” by 4” 
the Panda board ES is larger than either board, with more than double the overall 
area than its competition at 18 inches2 used. Between the three boards, the 
Panda board ES’s multitude of features cause it to take up a large physical area, 
which is a disadvantage in our project.  
 
Finally, we discuss power usage. While all three boards are compatible with 5V 
DC power supply, only the Raspberry Pi and Beagle Board Black are able to use 
a 3.3V DC power supply. Since we plan to use a 5V DC supply, the alternative 
power option is not necessary, though a welcome addition if a lower power rating 
is needed. Between the three boards, the Panda board ES draws the most 
current, with a maximum of 800mA at full usage. Once again, the Raspberry Pi 
and Beagle Board Black are close in specifications, where the Raspberry Pi 
model B has a maximum draw of 700mA and the Beagle Board draws a 
maximum of 470mA.  
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All of the specifications discussed in 3.5 Microcontrollers/Computing are 
condensed into the table below. 
 

 
 

Raspberry Pi Model 
B 

Beagle Board 
Black 

Panda Board 
ES 

Price $35 $45 $182 

Processor 700MHz 1GHz 1.2GHz Dual 
Core 

RAM 512MB 512MB 1GB 

Storage SD/MMC Slot SD/MMC Slot 2GB internal, 
SD/MMC Slot 

Size 3.37” x 2.125” 3.4” x 2.1” 4.5” x 4” 

Power 
Supply 

3.3V DC or 5V DC 3.3V DC or 5V DC 5V DC 

Max. Drain  700mA 470mA 800mA 

Table 4 Comparison Chart of Microcontrollers 

3.6. Power 
 
Regulated power to all components in the system is crucial for smooth and 
consistent operation. Input into the system could potentially be provided by 
multiple sources on the robotic platforms including shore power based systems 
or logic/motor battery systems. When the systems are not undergoing testing in 
the field the system will be powered by either a 12V or 24V DC system. This 
shore powered system consists of AC to DC converters as well as DC to DC 
converters to 12V. This system allows for the option of plugging the entire robotic 
platform into the wall to keep all essential systems online without the requirement 
of the batteries. This allows for the batteries to be charged while development 
can continue onboard the system. The same is to be true of the embedded 
LIDAR system to be developed.  
 
In order to properly ascertain power management of the system it is expected 
that total system consumption be less than 36 Watts total. The breakdown of the 
total expected system consumption can be seen in the table below. 
 

Component Expected Voltage 
(Volts V) 

Average Current 
(Amps A) 

Average Power 
(Watts W) 

LIDAR 12.0 0.75 9.0 

Motor 12.0 1.25 15.0 

Microcontroller 5.0 0.75 3.75 

Encoder 5.0 0.10 0.5 

Webcam 5.0 0.5 2.5 

Total Expected Power Consumption 30.75 

Table 5 Expected Power Consumption by System Component 
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With an average of 30.75 Watts predicted for the system the goal maximum load 
of 36 Watts is well within reach. Proper testing of each physical component will 
be necessary for proper power consumption approximation as each component 
is manufactured to different tolerances and will use varying amounts than 
specified from the manufacturer.  

3.6.1. Regulation 
 
There are different topologies available to convert the 12-24V DC input into the 
system down to the 3.3 and 5V logic necessary for the smaller system 
components. The two most commonly used regulators are linear and switching 
based voltage regulators. Each type has many different advantages and 
disadvantages based upon the intended application. With the goal of maximizing 
regulator and total system efficiency it is necessary for the group to choose the 
best methodology for regulation. Other factors which will be considered by the 
group in choosing the best regulator includes the criteria of input/output voltage 
ranges, thermal output, package type, footprint size, and external componentry. 
 
Linear based regulators can only step down output voltage from the input 
whereas switching systems can step up, down, or invert. Efficiency of linear 
solutions is typically lower than that of switching where the difference between 
the input and output voltages to the system are great. This would be the case in 
this system where the minimum input and output voltages would be 12V and 5V 
respectively. It is also a requirement of linear systems that the input current be 
the same as the output current which typically causes lots of heat on the 
regulator itself. This is a characteristic that is not shared in switching regulators 
and is another characteristic of linear design that must be considered when 
designing a PCB. However the tradeoffs towards implementation of a switching 
system typically include higher complexity in terms of external componentry. 
Switching systems can call for the use of many diodes, inductors, and filtering 
capacitors before input can be received by the integrated circuits. This contrasts 
heavily to the common linear system where the only external components are 
usually simple bypass capacitors. The linear systems also do not frequently 
experience the kinds of noise and ripple associated with switching systems. This 
is highly dependent on the switching rate of the given regulator however and is 
not normally a complication. Comparing both linear and switching regulation 
technologies it is hard to determine exactly which technology will be used in the 
final system. The group therefore decided it would be best to examine products 
from both categories to determine the proper integration for the system. 

3.6.2. TI LMZ14203 Simple Switcher  
 
The LMZ14203 switching power module is a step-down based switching 
regulator solution. The part has been found capable of driving a 3A load which is 
sufficient for our power requirement of 6.75 Watts on the 5V rail as demonstrated 
in table 5. The IC is capable of handling from 6V to 42V maximum and is 
available in a TO-PMOD-7 package. This package type has 7 large pins all 
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oriented on the same side of the plastic housing making it very easy to surface 
mount onto a PCB. Upon examining the datasheet provided by TI the following 
application circuit was drafted and can be seen below.  

 
Figure 19 Example Circuit Using LMZ14203 Switching Regulator 

 
This example circuit demonstrates a 5V output design from a 12V input with all 
external components in place including optional surface mounted LEDs for visual 
confirmation of power on the PCB. In total this part would require a total of 12 
external components to be driven in this manner. Without the optional LEDs it 
would require 8. The ability of this component to accept the variety of input 
voltages possible while maintaining efficiencies upwards of 90% makes it an 
ideal solution for regulation of the 5V subsystem. With the only external 
components necessary being a few resistors and capacitors it provides a simple 
reusable design for regulation of many different rails if more were necessary for 
the microcontroller selected. The possible reusability makes the chip very 
appealing to the group as it could possibly lower overall total time necessary for 
the design of the final PCB.  

3.6.3. TI LM7805CV Linear Voltage Regulator 
 
The LM7805CV is a linear step-down based regulator capable of delivering 1.5A 
at 5V. The system is of a TO-220V which is a three pinned plastic package with 
the capability of mounting to a heat sink for heat dissipation. This regulator is 
also available in horizontal mount packages which can be soldered or screwed 
into a PCB for dissipating heat. The regulator is of a through-hole design which is 
typically considered the easiest to hand solder unlike surface mounted 
components. From the datasheet an example use case of this regulator was 
drafted for use in regulating the expected 12V input into the system down to 5V. 
The applicable circuit can be witnessed in figure 23 below.  
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Figure 20 Example Circuit Using the TI LM7805CV  

 
The three pinned regulator only requires a couple of bypass capacitors making 
the footprint of this regulation system extremely simple. In total this regulation 
system would only require a total of 3 components and two of those are just 
bypass capacitors making it ideal for reducing PCB footprint size. On higher 
loads however it may be necessary to add a mounted heat sink or add a screw 
mount to the board in order to dissipate the extra heat that can be generated on 
higher loads. The LM series of linear regulators is very popular in small 
embedded projects because of their built-in over current protection which makes 
it impossible to draw too much power from them. This is partially due to the built 
in overheating protection which can regulate how much power can actually be 
drawn through the regulator at any given time. This can provide safety to the 
microcontroller and other components in the system running off the output rail 
generated by this regulator and makes for an appealing option. The price of this 
linear regulator is also much less than that of other more elaborates switching 
systems. This is another advantage if more regulators are needed throughout the 
system as repeatability will cost less as smaller BOM means a smaller PCB and 
a smaller overall cost.  

3.6.4. CUIINC V78-2000 
 
The goal of the CUI V78 series is to compete with the success of the TI LM78xx 
series linear regulators. An example of one of these regulators can be seen in 
the previous section. The V78 family is available in a similar package and can be 
dropped into the same footprint as the LM78 series regulators. These 
components however are not linear but instead are fully embedded switching 
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regulators similar to that of the LMZ series. The similarity to the LM78 regulators 
means the same circuit seen in figure 23 can be used with this IC.  
 
Just like the previous LM TI series the V78 needs only two bypass capacitors for 
normal operation making its foot print the exact same to that of the TI linear 
solution. The output of the V78-2000 is 2A at 2.5, 3.3, 5, or 6.5 volts. This is due 
mainly to the fact that it is a switching based regulator and thus the switching 
frequency can be modified to the require output voltages. This provides a lot of 
the same flexibility as the TI LMZ based switching regulator but with all of the 
advantages of a smaller linear solution. That is to say it also has a similar 
efficiency curve to match that of a normal switching system. There is a stricter 
limitation however on the available input voltage range being from 4.75-18v. 
Assuming a 12v input into the system however it is still well within tolerance. The 
overall smaller footprint also means that more components or additional 
regulators can be fit onto the PCB without sacrificing price which is not normally 
the case for a switching regulator. This makes the CUI V78 series an appealing 
option as it would appear to have all of the most important advantages of both 
linear and switching technologies without introducing any new drawbacks.   

3.7. Waterproof Connectors 
 
As part of the project requirements and the expected operating environment of 
the proposed system it has been deemed necessary to isolate connections from 
the 3D laser system to the other components on the robotic platforms. This helps 
to ensure compatibility with current external connection systems which already 
exist frequently on the robots in the organization currently. It will also ensure 
operational safety to the individual components on both ends of the connection. 
At minimum the power lines should be protected from the elements as to ensure 
that no excess in humidity, condensation, or other forms of moisture are able to 
cause shorting across the DC inputs into the system. These inputs could be 
supplying upwards of 30 Watts at any given time and a short could cause 
catastrophic failure to other systems tied into that input if a short were to occur. 
Waterproof connectors will also provide an easy way to disconnect and 
reconnect the system in a regular fashion as will be necessary moving the 
system across multiple platforms. 

3.7.1. Weipu Connectors 
 
Running power to and from the boxes and enclosures of the various robots to the 
embedded LIDAR platform requires a safe interface which can withstand a 
variety of different weather conditions. Attempting to achieve the NEMA standard 
of IP45 or better requires a minimum level of waterproofing. Finding a series of 
connectors with multiple footprints, connector ratings, and multiple conductors is 
a vital aspect of a successful embedded LIDAR solution.  
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Figure 21 Weipu Connectors Mounted 

3.7.2. Bulgin Buccaneer Connectors 
 
The Bulgin Buccaneer connectors are highly durable connections. These 
connectors allow for solid data connections in tough environments. The 
Buccaneer connectors are also waterproof. This would allow our system to be 
utilized in a wet environment. The IP68 Buccaneer waterproof connector system 
allows for a rated voltage of up to 277V and rated amperage of up to 12A. These 
connectors offer a scalable number of connection terminals. Depending on the 
application that is necessary, these connectors could have 2, 3, 4, 6, 7, 9, 12 or 
25 poles. With each additional pole that is used the maximum number of amps 
that can be carried over the connectors decreases. Using the maximum number 
of poles, 25, the connector can only handle 50V, 1A lines.  
 
These connectors have been rated to use different protocols, standards and 
interfaces. Using these connections, we can implement IEEE 802.3 Ethernet 
communication. Using full-duplex Ethernet over these connections is possible 
and would allow for waterproof connection of lines that could be used for 
communication via TCP, UPD, or other network communication methods. These 
connectors are rated for use as cat-5e. This standard allow for power over 
Ethernet as well as data. This also enables high data rates, up to 1000Base-T.   
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Firewire and USB2.0 interfaces are supported via these connectors as well. With 
these connectors, the host system can communicate with USB peripherals in a 
waterproof environment. USB2.0 provides high speed serial data communication. 
This could allow for multiple component communication through this single 
connector. USB2.0 supports a maximum of 480Mbps throughput. This speed will 
be split up between communications for each device that is shared on the same 
bus.  
 
The connectors feature multiple safety features that prevent accidental 
connections and potential catastrophic scenarios. The connectors feature screw 
on caps that are keyed in a certain way to make sure that the connection cannot 
be mistaken. The caps do not require tools to connect either. Using tools could 
potentially create too much force on the connections and would possibly allow for 
stripping of the connections. Only allowing hand-tightened connections keeps the 
possibility of damaging the connections at a minimum. 
 
These connectors also feature a number of O-rings prevent leakage and 
maintain the constant pressure to remain secure. There is also a gland and a 
gland nut that keep the water from entering the electrical areas of the connector. 
All of these precautions will allow the connector to remain dry and operate as a 
normal connection would. The cost of these connectors may be limiting on a 
large scale, but for a small scale project, they would be fine. 
 
As well as waterproof, these connections advertise themselves as dust proof. 
Many military applications require use of electronics in the desert. The desert can 
lead to corrosive and deteriorating environments that would otherwise destroy 
electrical connections. Using these connectors, the sand and water would not 
reach the electrical components and allow for a much longer and safer lifespan 
for the systems involved. 
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Table 6 Bulgin Buccaneer Connectors 

3.8. Data Representation Software 
 
A point cloud is a 3-dimensional representation of space. It includes an X, Y, and 
Z plane. This can include single or multiple objects. 
 

 
Figure 22 Point Cloud Image 

(Permission granted by PCL) 
 

 
We are using point clouds to represent our environment in front of our sensor. 
We are collecting information from our laser sensor and then creating our point 
cloud on the fly. Although point clouds represent 3D objects and environments, 
they are merely a snapshot of the world. In order to utilize the point cloud the 
information held within must be manipulated and processed to be usable. The 
use of object recognition or surface recognition may have to be utilized in order 
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to see an actual surface. 
 
Representing the information will require the use of 3D rendering software. This 
software will display using the given coordinates, X, Y, and Z. Some current 
software such as Autodesk AutoCAD, will take this information and use detection 
algorithms in order to differentiate between different objects and surfaces. A very 
powerful library for the use and manipulation point clouds is the Point Cloud 
Library or PCL. 
 
The Point Cloud Library is a standalone, large scale, open project for 2D/3D 
image and point cloud processing. Since March 2011, the site has been devoted 
to the mapping of 3D image representation and creation. 
 
This library contains many modules: filters, features, registrations, kdtree, 
segmentation, sample consensus, range image, keypoints, octree, surface, 
visualization,  and IO. Each of these modules gives high level access to functions 
and methods below them. The module that may interest us the most for our 
project is the Range Image module. 
 
The pcl_range_image library contains two classes for representing and working 
with range images. A range image (or depth map) is an image whose pixel 
values represent a distance or depth from the sensor's origin. Range images are 
a common 3D representation and are often generated by stereo or time-of-flight 
cameras. With knowledge of the camera's intrinsic calibration parameters, a 
range image can be converted into a point cloud. 
 
Another module that will help us in our project is the IO module. The pcl_io library 
contains classes and functions for reading and writing point cloud data (PCD) 
files, as well as capturing point clouds from a variety of sensing devices. Using 
this library in conjunction with the API provided by our laser sensor, we may be 
able to create a dynamically changing point cloud that we can represent. 
A third module that we can use is the visualization module. The pcl_visualization 
library was built for being able to quickly prototype and visualizes the results of 
algorithms operating on 3D point cloud data. This will allow us to assemble the 
point cloud library in order to view it. This is not necessarily needed for the core 
function of the application, but is needed for debugging and human interaction. 

3.8.1. Depth Imaging 
 
Sometimes you cannot choose the optimum angle to take a picture. If the object 
is essentially planar (e.g. a painting on a wall) or the angle is not off by much 
then there is hope that you can correct the perspective afterwards. This is highly 
the case in our project, where we will be accessing an angular view of the 
immediate area. As such, it is essential that we have the ability to transform our 
circular view into an image that can be represented on a 2d plane (computer 
monitor). Using our algorithm, we calculate the distance from our plane of view to 
each point on the rotational axis that is read in. Once the horizontal plane’s 
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points have been converted from polar, each horizontal line is interpreted using 
the same algorithm.   

3.8.2. OpenCV 
 
OpenCV is a cross-platform library of programming functions mainly aimed at 
real-time computer vision, focused mainly on real-time image processing. We 
use this library to alleviate some of the design time needed to create our LIDAR 
image processing software, as many of the functions we use are included in the 
OpenCV library. We mainly use two libraries, calib3d, and imgproc. We have 
debated using objdetect to add extra functionality to our design. calib3d, Camera 
Calibration and 3D Reconstruction. This library interprets our raw LIDAR data 
and translates it from a polar coordinate array to the single plane array we intend 
on displaying using perspective transformation. This library is called often, as we 
need to interpret each line of data as it passes from the LIDAR to our board. The 
2d data is stored in an alternate location to that of the polar data, and is passed 
to image processing. imgproc, Image Processing. This is the library used to 
create the depth coloring to our images. The library allows us to take the 
converted polar data from the 3D Reconstruction module and translate it to a 
depth field understandable to the human eye. This is done using the Geometric 
Image Transformations module within imgproc. There are multiple filters we can 
use to get the correct final image out of our data. This module also allows us to 
do motion analysis and object tracking, if we see fit. We have considered this 
option, and it is currently still being discussed whether or not to add in, as the 
work it adds may be more busywork than research and design. We may also add 
a basic object recognition module here, if we see it to be fitting with the design. 

3.8.3. SimpleCV 
 
SimpleCV is a computer vision library. They advertise the library as being simpler 
than alternatives. Even though it is simple, it does not mean that it is 
underpowered. It has many equivalent functions that are included in OpenCV. 
The SimpleCV library contains a section ‘ImageClass’. This class provides the 
ability to do a vast amount of image manipulation and capturing. Using what we 
know of the physical setup, we could use that input to generate the functions that 
would enable us to warp and transform the images to fit into our rendering. Using 
the edge detection portion of the library, we could find key point in our image that 
we can use for alignment. In order to convolve the point cloud with the real world 
image, we would need to use the already created point cloud with the functions in 
the Stereo Image library. The SimpleCV library could be very useful in our efforts 
to transform the data that we have created. It could possibly prove to be simpler 
for creating our human viewable outputs since it has a much more simplified 
usage than OpenCV. 
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3.8.4. PDAL 
 
PDAL, or Point Data Abstraction Library, is a library focused on the manipulation 
of point cloud data. It is primarily focused on managing LIDAR data, but branches 
into other point cloud data as well. PDAL is sponsored by the U.S. Army Cold 
Regions Research and Engineering Laboratory. The PDAL library is not nearly 
as extensive as the point cloud library as it does not focus on the interpretation 
and visualization of point cloud data. PDAL is focused on reading, writing, and 
basic filtering of point cloud data. PDAL is a C++ library that can compile on Unix 
based operating system or windows. One of the major factors for using PDAL 
would be to streamline the data translation information. This may have proved to 
be worthwhile when transmitting our data to and from the host and clients. There 
are specialized algorithms that allow large speed increases for reading and 
writing the data that may improve the overall latency of the process. 
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4. Design 
 

4.1. Hardware Design 
 
Concerning the electrical design of our system, we must identify the structure 
required to facilitate its intended functions. The MCU accepts input from the 
LIDAR sensor and orientation sensor as well as motor feedback. That input is 
interpreted together in order to ensure our resulting images are correct. In 
addition to the input the MCU must accept, it must also send the interpreted data 
to our PC for image display. The following block diagram depicts the basic 
electrical subsystem of our project. 

 
Figure 23 Hardware Block Diagram 

 
We regulate the power supply’s voltages, as each of the different hardware 
subsystems requires a different voltage to run correctly. The specifics of how 
each subsystem is powered are discussed in their relative section. 
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4.1.1. Hokuyo UTM-30LX 2D Laser Range Finder 
 
The Hokuyo UTM-30LX 2D Laser Range Finder allows us to scan distances up 
to 30m away with high accuracy. This LIDAR can be controlled using USB 
connection with the provided SCIP ver2.0 protocol, which can handle up to 
12Mbps of data. The laser operates between 10-12 volts. Since our system is 
designed on a 12V rail, there are no extra components needed to power this 
device.  
 
The UTM-30LX can scan up to a 270 degree arc with an angular resolution of .25 
degrees, giving us up to 1080 distance values per scan. Using the SCIP 
interface, we can change the total scan angle, as well as the start and end points 
of such, as shown in the figure below. 
 
 

 
Figure 24 Hokuyo UTM-30LX Scan Steps  

(Figure used with permission) 

 
 
Each scan follows the same series of steps, as seen in the figure above. Step 0 
is the first measurement point at which the scanning unit is enabled, though no 
data is sent until it reaches step A, the initial measurement step of detection 
range. This step is very important, as it does not occur until the UTM-30LX has 
reached the desired starting angle provided by the user. Step B, the sensor front 
step, is reached at the same time each scan, as it is at a point normal to the front 
face of the device. Step C, End point of detection range, is the other user defined 
step. Similar to step B, this tells the LIDAR when to stop recording the data it is 
scanning. Steps B and C are very important, as they allow us to set our start and 
stop angles at any point outside of the dead zone.  
 
While the UTM-30LX has a maximum scan angle of 270 degrees between step A 
and step D, the LIDAR rotates through a 360 degree circle, such that it starts and 
ends at the same point each time. No matter the chosen scan angle, one full 
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rotation will always take 24ms. Once one full rotation is finished, the UTM-30LX 
sends out a 1ms low pulse. This 1ms low pulse is used for synchronous output. 
This allows us to not only be aware of a completed scan, but we can also use 
this synchronous pulse to drive the Dynamixel MX-28T Robot Actuator, 
coordinating the rotation between the two devices. The process of rotation and 
synchronization is shown in the figure below. 
 

 

 
Figure 25 LIDAR Sync Pulse 

(Reprinted with permission from Creative Commons License) 

 
 

4.1.2. Timing 
 
As microcontroller timing is critical for this project, we will needed to connect the 
synchronous output from the UTM-30LX to the Raspberry Pi. This is done by 
connecting the COM and synchronous output from the UTM-30LX’s 4-pin robot 
cable to two of the eight available GPIO ports on the Raspberry Pi. Each pin of 
the robot cable has a different purpose, but we only need to connect the 
Synchronous/Detection output and the COM output to the microcontroller for it to 
receive the 1ms Sync Pulse. 
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4.1.3. Power Requirements 
 
The Hokuyo UTM-30LX is designed to use a 12V DC power supply, though it is 
capable of functioning with a 10% tolerance, allowing a fluctuation from 10.8V to 
13.2 V. While we plan to for the voltage to stay at a solid 12V to keep the LIDAR 
unit at a safe voltage, there is some room for leeway. The UTM-30LX typically 
draws 700mA of current during standard operation, but can pull up to 1A at 
maximum. The unit does not draw more than 8W total. If the UTM-30LX is not 
powered with over 10.8V the device does not function, though the low voltage 
LED is triggered to indicate that the in operation of the device is not due to a 
software or hardware error. If the UTM-30LX is given over 13.2V, it is possible 
permanent damage to occur in the hardware, a risk that must be avoided at all 
costs, as the LIDAR unit makes up a very large majority of our budget. The 
LIDAR unit will still display the green power supply LED if unable to draw the 
amperage needed, though its functions will be impaired. In this case, we can 
monitor the frequency of the sync pulses received to ensure that the unit is 
spinning at the correct 2400RPM. Similar to the previous case of excess voltage, 
if there is too much amperage in the system, it is possible for the system to 
receive irreversible damage to its main components. 
 
The UTM-30LX is designed to operate at a temperature range of -10° Celsius 
(14° F) to 50° Celsius (122° F). As testing and storage will occur in Orlando, 
Florida and the final product will be used in Virginia during in July, we need not 
worry about either of these temperatures. Orlando has never reached either 
extreme temperature, as its record low is 18 and record high is 103. Even in July, 
Virginia has never reached over 110 degrees thus will not conflict with the UTM-
30LX. On the other hand, the LIDAR unit is also designed to operate at less than 
85% relative humidity, which may be a possible issue given its Florida location. 
However, as the UTM-30LX has seen service in previous AUVSI RoboBoat 
competitions without fault, the device appears to be able to operate above its 
written tolerance, though the humidity of the lab will be monitored to avoid 
damage. 
 
The system will have an external DC power source of 12V and 24V. We will be 
utilizing the 12V power rail in order to supply most of the power to our devices. 
The 12V power source is supplied from a battery that is powering the external 
system. The external system is a mobile unit. It will be working in the field. This 
means that our laser range finder will be subject to environmental conditions that 
we must take into account when hooking up our power and data connections. 
Also, we will need to assume that the 12VDC that is supplied to our system is 
actually within operating range. With DC power systems, this cannot be 
guaranteed and usually the power will start high and drop lower as power drops. 
This means that our working DC voltage values are somewhere between 13.5V 
and 9V.  
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In order to compensate for this fluctuation of the voltage, we will need to look at 
each of our components. The Hokuyo 2D laser scanner can operate between the 
voltages of 10V - 13V. This is an acceptable range to deal with the fluctuation of 
the power. We will need to advertise our constraints to the external system to 
make the end user aware that the voltage will need to stay within that range. We 
monitor the voltage in our control system and provide a safe shutdown and a 
warning before the actual voltage drops below operating values and potentially 
causes damage or corruption within the system. 
 
The HD camera would be powered from the Raspberry Pi USB port. Since we 
are already regulating the voltage for the Raspberry Pi, it would provide regulated 
voltage to its daughter components. 
 
The logic pins on the Raspberry Pi will need to be corrected in order to be 
utilized. Most of the devices logic is in 5V, but the raspberry Pi logic is based on 
3.3V. This creates the issue of overloading the logic circuits and potentially 
damaging the whole system. We will be using the 8-channel bi-directional logic 
level converter, TXB0108 in order to use the higher voltage logic on our lower 
voltage logic board. 
 

 
Figure 26 Pinout of the TXB0108 8-Channel Logic Level Converter 

(Reprinted under creative commons license) 

4.1.4. Raspberry Pi Model B 
 
The Raspberry Pi model B allows us to use a credit card sized microcontroller to 
take and interpret in LIDAR data, control the Dynamixel MX-28T Robot Actuator 
and send interpreted data to the external display system. The raspberry Pi model 
B is powered by a 5v micro USB. The device’s current requirement is dependent 
the number of devices connected. We have found that purchasing a 1.2A power 
supply provides with ample power to run the Raspberry Pi. The model B 
commonly uses 700mA-1000mA depending on what peripherals are connected. 
The maximum power the Raspberry Pi can use is 1 Amp. The power 
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requirements of the Raspberry Pi increase as various interfaces are used. The 
GPIO pins can draw 50mA safely; (50mA distributed across all pins, each GPIO 
pin safely draw 16mA maximum), the HDMI port uses 50mA, the camera module 
requires 250mA, and a keyboards or mouse can take from 100mA to 1000mA. 
For our usage, the only things connected to the Raspberry pi during operation 
will be the Hokuyo UTM-30LX, the Dynamixel MX-28T motor serial connection, 
the pc, and the webcam.  
 
The Raspberry Pi model B microcontroller has a total of 26 available pins. These 
pins are used for different bus types, General Purpose Input/Output, as well as 
power and ground. The section below details the usage of each bus. 
 
 

3.3V 1 2 5V 

I2C1 SDA  3 4 5V 

I2C1 SCL  5 6 GROUND 

GPIO 4 7 8 UART TXD 

GROUND 9 10 UART RXD 

GPIO 17 11 12 GPIO 18 

GPIO 27 13 14 GROUND 

GPIO 22 15 16 GPIO 23 

3.3V 17 18 GPIO 24 

SPI0 MOSI 19 20 GROUND 

SPI0 MISO 21 22 GPIO 25 

SPI0 SCLK 23 24 SPI0 CE0 N 

GROUND 25 26 SPI0 CE1 N 

Table 7 Raspberry Pi Model B Pin Out 
 
A General Purpose Input/Output (GPIO) pin has a behavior defined by the user, 
and are unused by default. As such, each enabled pin can be either an input or 
an output; usage of the pin is at the discretion of the user. GPIO pins numbered 
7,11,12,13,15,16,18 and 22. 
 
Also known as the Inter-Integrated Circuit Bus, the I2C is included to provide 
communications between multiple integrated circuits, including the Broadcom 
BCM2835 SoC processor built into the system. These pins also allow access to 
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the Raspberry Pi’s pull-up resistors, allowing for access to I2C functionality 
without needing external resistors. Specifically, pins 3 and 5 are for the I2C bus, 
pin 3 providing the Serial Data Line (SDA) signal and pin 5 providing the Serial 
Clock (SCL) signal. The I2C0 bus is not the only I2C available; however the I2C1 
is terminated on the raspberry pi’s circuit board resistors and unavailable.  
 
The Universal Asynchronous Receiver/Transmitter (UART) bus is located on pins 
8 and 10. Pin 8 is used for message transmission, pin 10 for message receiving. 
This bus provides a simple serial interface, requiring only 2 wires for access. 
These ports can be used to display kernel data if connected to a device capable 
of receiving and displaying the serial messages. While not necessary for any of 
our LIDAR functions, the UART bus is useful for debugging the raspberry pi if 
errors do occur. 
 
 
The Serial Peripheral Interface (SPI) Bus is used mainly for in-system 
programming, a process that allows an embedded device to be programmed 
when installed into a system, instead of pre-programmed. In our case, this would 
allow us to re-program the raspberry Pi on the fly. Unlike the previous I2C and 
UART busses, the SPI bus uses five pins instead of two, allowing for 
communication with more than one device. Of these five pins, pin 19 provides the 
SPI Master Output, Slave Input (SPI MOSI), pin 21 provides the SPI Master 
Input, Slave Output (SPI MISO) and pin 23 provides the Serial Clock (SCLK). 
The last two pins, 24 & 26 are used in tandem for Chip Select signals, allowing 
for up to two independent slave devices.  
 
The Raspberry Pi also provides two 3.3V and two 5V pins, along with four ground 
pins to complete any needed circuit. Unfortunately the LIDAR unit is unusable at 
such low voltage, as is the Dynamixel Servo. 

4.1.5. Dynamixel MX-28T Robot Actuator 
 
The Dynamixel MX-28T Robot Actuator servo allows us to move the laser 
precisely. This servo can be controlled via serial communication and provides 
location feedback. This servo operates between 9 - 12 volts. Our system is 
designed around a 12V rail, so this servo will not have to have extra components 
in order to allow it to function. 
 
The servo rotation can provide us with 360° of motion. We will be utilizing all of 
this motion since the laser will be rotating in full circles to acquire the greatest 
amount of data. Since this servo will be in constant motion, it needs to have a 
tolerance for heat. The highest operating temperature of this servo is +80°C. 
Throughout our tests, we monitor the temperature and verified our assumptions 
that we will not exceed that temperature. 
 
The servo moves our laser and platform. The weight of these objects do not 
exceed the 2.6 Nm torque maximum of the servo. We did not witness any 
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opposing forces upon our motion, so the weight and friction of movement are the 
only aspects we took into account. This was verified within testing. As part of the 
project specification, we designed the laser to be able to have dynamically set 
scan speeds. The maximum speed of the servo at no load is 0.079 sec/60°. This 
will suffice our project since our laser will be a limiting factor in our scan speeds. 
 
In order to provide motion to the scanner, we will have to create a platform that 
will hold the laser and manage the cabling. We will be using a slip ring with 
connections because the actuator will be rotating 360 degrees, it will be rotating 
360 degrees continuously. The orientation of the laser is perpendicular to the 
normal view. We will be utilizing the rolling scan method. 
 

 
Figure 27 Laser Mount Outline 

 
This method will allow us more easily rotate the laser and obtain a consistent 
image. However, it’s not without its caveats. This method, at the worst case, 
requires us to complete a half scan in order to create a complete horizontal 
image. Through testing, we determined if the scans can be completed timely 
enough and they were. If we were to use a pitching scan, it would allow us to get 
a single horizontal scan immediately. This may be better suited to faster moving 
mechanism, and may be able to be changed in future renditions of this scanner. 
Our rolling scan method will made construction more complicated. In order to 
scan properly, we will need to rotate the laser scanner upon its axis of rotation. 
The shaft of the rotation will come from the side and the rotation would move the 
entire platform. This produces less shear forces on the servo and can provide a 
more consistent rotation. Even though there is feedback provided to our system, 
it will create a more consistent and even timeline. This proved to be more 
essential when developing software and for real time operating. 
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4.1.6. Motion 
 
The design implementation will followed the rolling scan implementation as 
outlined in the 3.3.1 section. It has been evaluated as having the greatest 
available 3D scanning range and resolution given the complexity. Prototypes 
were also created using other 3 dimensional rotating techniques including the 
pitching and rolling systems. The figures below showcase Solid works renderings 
of previous prototypes designed by the group.  

 
Figure 28 Pitching Scan Prototype 

 
The pitching prototype is a gear based system with complex rotational assembly. 
A curved gear rack is fixed to the sensor on the back from a plate which is then 
bolted to the bottom of the sensor. The rotating gear above the Hokuyo spins 
from torque generated by the sideways mounted motor spinning the entire 
assembly up and down generating a pitching volume. The rendering shows to 
scale the rack, gear, and laser mounting bracket to be fabricated either via plastic 
molding, 3D printing, or professional CNC machining. Missing from the rendering 
is the housing for all electrical components including panel mounted waterproof 
connectors, the microcontroller, and PCB for power regulation to the laser and 
motor systems. The box would house the motor and gear with a slotted design to 
allow the curved gear rack too freely around it. The back of the box will provide 
mounting solutions to a mast along two axes for better platform compatibility with 
the current robotic platforms in the club. Overall this design is projected to weigh 
approximately 4.2 pounds and have a footprint of 5.3 by 6.2 by 7.4 inches. 
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Figure 29 Rolling Scan Model 

 
The rolling scan model, unlike the pitching prototype, is a direct interface based 
system with a single mounting bracket. The bracket provides a connection to 
hold the sensor while also placing the motor at an appropriate height to achieve 
the correct movement of the sensor. The axis of revolution is generated by the 
rolling mounting plate generating a rolled capture volume. The rendering shows 
to scale the mounting bracket to be fabricated either via plastic molding, 3D 
printing, or professional CNC machining. The box will house the motor with 
connectors to route the laser wires through. The back and top of the box will 
provide mounting solutions to a mast along two axes for better platform 
compatibility with the current robotic platforms in the club. Overall this design was 
projected to weigh approximately 3.6 pounds and have a footprint of 4.3 by 5.4 
by 5.4 inches. 

4.2. Software Design 
 
This project utilized more software development than anything else. This includes 
reading sensor data, controlling motors, reconstructing images, generating 3D 
point clouds, and communications. Throughout this section, we will be describing 
the different functions of our project: control communication, image translation 
and reconstruction, and representation of the data. This system is utilized in an 
existing real-time robotics application. The 3D laser range scanner we developed 
needed to be able to send out standard information that a robot can read and 
then use to understand its environment. Thus, the software was tailored to a real-
time system instead of a non-real-time system. 
 
Once the system is powered on, the control system begins to initialize. Since this 
is a kernel based software approach, there is latency in order to load the OS and 
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applications into memory. In order to verify that the system is connected, we 
have an LED indicator start flashing once points are being read. First, the control 
system will power on the laser scanner as well as the motor mechanism. The 
external system will not need send the command to the control system to begin 
scanning. The system automatically initiates scanning the information into 
memory. The control system will stores the most recent version of the information 
and sends it out as fast as possible and will constantly keep it up to date. In order 
for the external system to receive the complete data, it will need to request it from 
our system. This is done through our own communication protocol. The original 
plan was for the external system to ask for either a complete set of data, a finite 
set of data, or even a single point, but instead, the point clouds are automatically 
sent 1080 points at a time. The returned information is in the form of a point 
cloud which is just an r, theta, phi spherical matrix of the locations of a surface. 
 
The main application service will be running on the client. Here the system could 
obtain the 2D Hokuyo laser depth data and the HD camera image. This 
information could then be interpreted and diplayed. The client could also be able 
to generate a number of rendered images for the user, but this will take more 
resources. The client could output the rendered point cloud data with only point, 
a colorized spatial image, or a transposed 3D image using the HD camera and 
the point cloud data. 

 
Figure 30 Software Block Diagram 

4.2.1. Laser Communication 
 
The Hokuyo laser scanner has an accompanying C++ library called URG. The 
URG library spans many of the laser scanners and includes the basic 
functionality in order complete the main tasks using one of the supported 
systems, which in our case is Linux. Within this library we will be utilizing many of 
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the functions provided in order to create our scans. 
 
In order to initialize the Hokuyo scanner, we are using the the urg_sensor.h 
library file. This library file allows us to specify a communication port and baud 
rate. The Hokuyo sensor uses RS232C in order to communicate, so these 
attributes must be set. Using the urg_open library call we can then start 
communication between the system and the laser sensor and begin the process 
of collecting data. 
 
The next library we will are using is the urg_utilis.h library. This library provides 
us with the ability to send commands to the Hokuyo sensor and collect data. We 
will first need to set our scan rate. As the sensor is not a 3D laser scanner, it only 
has a single axis of rotation to worry about. This axis of rotation will provide us 
data from a horizon and we can then interpolate those points into a 3D map after 
moving the laser. To set the speed of the laser we call the 
urg_set_scanning_parameter from the urg_utils.h library. We need to pass it a 
few variables. First we need to pass it the variable that contains the 
communication information, then the max and min values, and lastly, the interval 
rate. The laser outputs a voltage jump to signal that a scan has finished and is 
moving on to the second scan. This can be seen in oscilloscope output figure. 
 
 
 

 
Figure 31 Oscilloscope Output of Laser Synchronization Signal 

 
The max and min values remain constant throughout the lifetime of the project; 
however, these may need to be changed after field work occurs. The interval 
steps will be user customizable since it may be necessary to have a higher 
resolution or a lower resolution depending on the usage of the scanner. 
 
In order to receive data from the laser, we need to poll it for information. Since 
we continuously get the data, we created the code in order to continuously poll 
for the information. Using the library already added to the project, we will call 
urg_get_distance. This will return a radial distance back from the laser scanner. 
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We then pass it the device connection setup information and the input buffer 
value. The buffer will be allocated based on the desired range of view. 
 
Utilization of the C++ library will allow us to recreate a 2D map of a single scan. 
After which, we will use our developed application to translate those 2D maps 
into our 3D Point Cloud. There are numerous commands that we are using with 
the Hokuyo laser scanner in order to have complete operation. The following 
table provides the view of some of the members of the URGCtrl C++ library that 
we utilize: 

4.2.2. Dynamixel MX-28T Servo Communication 
 
The Dynamixel MX-28T Robot Actuator will provide motion to the laser 
mechanism. This servo will provide the rotational motion on the x-axis of the 
laser scan. The servo is controlled using a serial connection from the 
microcontroller. It allows for setting of the angular position on the motor as well 
as provides feedback to the microcontroller. The servo will provide 0.088 degree 
accuracy which allows us to accurately reconstruct our 3D image. 
 
With this servo, you can initialize a starting point. This will allow us to run a 
calibration before starting our scans. This proved crucial in our code as we will 
need to make sure all values are correct and are relative to a given “zero” point. 
RS485 asynchronous serial is the method of communication for this servo. It 
allows for commands to be sent or received at any time. This is a type of two wire 
communication. It does not regulate or guarantee speed or accuracy in this serial 
communication standard. Compensation in the code was written in order to 
maintain a consistent line of communication. 
 
This servo allows for multiple baud rates. We chose a high baud rate In order to 
get the most real time information and also wanted to verify the amount of error 
from the line was minimal, which it was. Communication for the servo is done 
using an instruction packet. In order to read or write data, the memory address 
must be referenced. The two section of memory are the EEPROM and RAM. The 
EEPROM can be used to program values of the servo that will not be erased 
power is removed. Alternatively, RAM is only used to operating values and will 
not remain in memory without power. 

4.2.3. Webcam Communication 
 
Communication to the HD camera could have been achieved through a custom 
library that runs in the user space of the Linux operating system called 
VideoforLinux2. This is software accelerated so the image will need to be 
buffered and then rendered for each image. We would have been able to control 
the access that camera has and may only need to take images every few 
seconds or we may sample from a video feed. 
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4.2.4. Platform Communication 
 
The goals of this project it was to be able to create 3D spatial representation of 
an environment for use on a kinetic robotics application. We needed to output to 
the robot a dataset representative of what is in front of it. We will be utilizing a 
serial connection for data extraction from our system. UDP communication allows 
us to communicate the point cloud information with any listening clients. This will 
allow us to create a packet that contains the necessary information. The robot 
will interface with our LIDAR system and output the point cloud information. We 
will create a set of predefined commands that will then get an appropriate 
response. Most of the time it will be requests for location data, however there are 
additional functions that allow settings to be altered such as sampling rate, 
sampling angle, maximum and minimum degrees for the field of vision, and other 
various settings. 
 
The packet structure used will contain a header file that provides basic 
information for transmission of the data. It will contain at least the initialization bit 
for the transfer, the packet length and a format ID. The packet will then contain 
the payload. This payload depends on the context of the situation. If the system 
was asked to supply information about the orientation of the laser scanner, then 
the payload will contain a specially created payload for representing that data. 
We had hoped to create a protocol similar or compatible with the ASPRS LIDAR 
Data Exchange format.  
 
This is a standard used by existing LIDAR systems; however there are numerous 
points of that protocol that do not apply to our project. For instance, we do not 
have a GPS on our system and one of the requirements on this standard is that 
we have GPS coordinates. We chose not to include this standard. 
 
The coordinates will be output constantly and will be supplied using the most 
recent scans. The system is not designed to remember or map out the 3D 
environment, but only to show what is currently known and can be seen for use 
for awareness and avoidance. The packet can come in multiple ways depending 
on the request. Originally, we allowed the request for a complete image and then 
we will supply a full 3D point cloud of the current image, but was altered after 
testing proved that it took too long to transfer that data. The method we used 
returns of only a portion of our known image, it returns a single scan from the 2D 
Lidar with interpolated r, theta, and phi points. This was useful for applications as 
the data needed to be smaller in order to transfer in real time over UDP. At this 
point the client can manipulate the point clouds as it sees fit. It may be useful if 
only a certain section is being monitored and waiting for movement in order to 
react. The other method that data can be viewed is scan by scan. The client 
could only to see the newest scans that it has received. There may be a wall in 
front of the laser scanner that exists and when the wall is removed, the 
application may want to react, but this is up to the client. 
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Each type of packet request data was going to have an identifying ID associated 
with it that is known in the protocol we would have developed. These numbers 
could have been any arbitrary ID, but it would have to be unique. In order to have 
a unique ID, we will be using 3 Bytes of data. This would provide us with a 
sufficient amount of data to have many commands as well as having the ability to 
discriminate which commands were sent. Each of these commands will then 
have a known structure. The payload may be larger or smaller depending on the 
command and will each contain a byte for length at this level if the amount is 
dynamic. Otherwise, it will be a known static length. 
 
Each of the payloads would have a known termination byte sequence 
established with the protocol. This is will serve as the flag that the data is 
complete. Once the header and payload have been finalized, the whole packet 
will need a checksum or sorts. A CRC could be calculated on the packet and 
tagged on to the end. This CRC could then be calculated on the receiving end to 
verify that the data packet they have received is complete. 
 
What was actually used was a UDP multicast transfer. Once the Lidar was 
operational, it begins sending out packets that are compiled and adjusted. It 
sends one 2D lidar scan at a time until the queue is empty. At the same time, 
more scans are added to the queue. This limited the amount of data sent out at 
once and allowed for real time rending on the client side. We found that this 
method utilizes about one megabyte per second of network bandwidth. Since it is 
multicast, anyone on the network can listen without hindering the Pidar. 

4.2.5. 3D Creation 
 
To fulfill the goals of this project, a 3 dimensional image had to be created. The 3 
dimensions will be the r, theta and phi or depth, angle to depth, and angle of 
motor respectively. In order to create the image, we must first read the sensor 
data of the Hokuyo 2D laser. This information will only provide us with the 
horizontal and depth portions of the image. This information will be obtained and 
retained in memory. Depending on the scan resolution decided by the 
configuration of the user, the system will tilt a certain number of degrees to obtain 
a second 2D scan. This again will retain into memory. This pattern will continue 
continuously and a full image is obtained when the motor has rotated 180 
degrees. It then continues to rotate to get an additional image. Depending on the 
speed of the scans set in the configuration by the users, a single scan should not 
take much time. The time to scan should be set sufficiently to provide an 
accurate representation of the image ahead of it before that image can change. 
 
Now that the memory is filled with N numbers of 2D scan lines the process of 
placing them together can occur. Depending on the ability of the code, this may 
happen in tandem with the scanning. The 2D scan lines are based on radial 
distances. These distances must be corrected for timing between the laser and 
the motor. We will not discard this information, but are merely interpreting it. 
These polar coordinates may be beneficial to the attached system as they will 
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attribute angle as well as magnitude of a certain object. We will repeat this 
process for all of the scan lines that were taken. The 2 rotational components are 
the laser scanner which is rotating on the y axis and the platform that is rotating 
along the x axis. The polar lengths will correspond to both of those rotations. This 
will mean that we will be taking the magnitude of those points and projecting it 
onto our new image. 
 
 

 
Figure 32 Projecting 2D Image from Radial Scan 

 
With our image we will retain a map. This map will allow us to maintain the 
information of the distances at each of the points; this is called a point cloud. 
With this information we can represent the image in corrected 3D. This will allow 
for a screen representation and rendering. This also will allow for finer 
adjustment and debugging. 
 
In order to achieve this transformation we will need to utilize a formula for 
projecting an image onto a 2D surface. The following formula will allow us 
achieve this action: 

             
 
This formula represents the projection of an image through a camera matrix. The 

camera represents our point of view. The      represents the amount of rotation 
and translation from the original point that is used when transforming to the 2D 
image. Applying this formula will be done using existing libraries within the 
OpenCV library. It is determined by the client which angles are appropriate for 
viewing. 

4.2.6. Point Cloud 
 
Previously, we have described how to scan in the 2D images and create an 
image. The distances that correspond with those points allow us to create a map 
in 3D. This is called a point cloud as seen in figure 37. Using the 2D information 
that we have collected we can create a 3 dimensional array of information. 
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Figure 33 Point Cloud Representation 

 
This will act as our coordinate system for our point cloud. This point cloud will not 
be able to be used as a reference. For example, if the robotic application would 
like to know what the closest point to it is, we would call on the point cloud and 
using an search algorithm, the client will need to find the range of closest points. 

To actually fulfill the duties of the above actions, we will needed to utilize libraries 
that have been written specifically for image capturing and recognition. The Point 
Cloud Library (PCL) provides a plethora of functions that may assist our project. 
The DataGenerator functions would have helped in the creation of the point 
cloud. Using this part of the library we could have provided the information from 
our setup and created the first portion of the point cloud. We utilized the VTK 
visualizer and used our own point cloud structure created specifically for the 
Pidar. 

The point cloud library can be compiled on a Linux kernel and can be run using 
our raspberry Pi and almost any linux system. These libraries make heavy use of 
the modified Raspien Linux distribution by utilizing the ‘hard float’ floating points. 
Besides using the point cloud library to create our point cloud it also allows us to 
generate images from it. Using the point cloud and the depth image libraries we 
can create a color coded image that we can display and provide either the 
system or the users. This would prove valuable in debugging or fast recognition 
of objects. 
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Figure 34 Range Image 

4.2.7. Real World Image 
 
In order to produce a more human viewable image we would have liked to be use 
an HD camera. This camera would have taken images of the scene in front of it. 
The camera would not always be sending the data, we would have to request 
that an image be taken sometime during the course of the scan. Once we had 
buffered the image we would have used an algorithm that correlates the captured 
image to the coordinate in our point cloud. 
 
Since we know the physical dimensions of the capture mechanisms and we know 
that images between them will have a consistent differential, we could have used 
a static approach to mapping the image. Other methods may have required us to 
use special image recognition techniques. However, we will still need to apply 
those techniques to produce a better looking image, but would not be the 
foundation of our alignment. 
 
In order to approach this problem, we could have used the open source 
computer vision library ‘OpenCV’. The OpenCV library contains methods that 
allow for translation of imagery to point cloud data. Before the OpenCV libraries 
can be utilized, we must remember that the point cloud data must be created to 
comply with both the point cloud library (PCL) and the OpenCV library. 
 
To get the most accurate settings, we will first estimate the angles and 
dimensions based on the physical construction. However, this estimation will be 
improved over time through testing and aligning. This testing and aligning will 
take into account all of the intrinsic properties of the camera setups that we may 
not be able to accurately measure or take into account.  
 
The resulting image would be a roughly 3D modeled image that should resemble 
the actual world in front of the cameras. This output is intended for a human 
viewer, as a robotics application may not have use for the real world image. 
However, this will be included as part of our output communication possibilities 
because there may be an application that may use the real world image. For 
instance, some applications may use this to provide object identification and 
retrieval based on color and shape. The HD camera will allow the application to 
view color as well as its physical makeup. 
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4.2.8. Dynamic Configuration 
 
Our application allows for the ability to manipulate settings. Based on our 
observations, we hard coded in the default settings into our application. However, 
the unit will be completely customizable using our outward facing interface. The 
settings will include the ability to customize the laser sensor resolution and 
speed, the motor angle and speed as well as image formatting. 
 
The laser settings will not be directly accessible for the end user. Because there 
will be some custom formulas and libraries involved, we cannot allow the user to 
directly alter the laser information. However, we will provide a function that will 
enable them to do such. When the user desires that a laser scanner be slower or 
faster or specifies a resolution, we will then insure that all appropriate settings will 
match. All of the calculations will need to be altered and the images will have to 
be adjusted in order to compensate for lower or higher resolutions. If the speed 
of the laser scan is adjusted, then we may need to compensate on our motor in 
order to allow a complete scan to complete.  
 
The motor settings are similar to the laser settings in that we do not allow for 
direct access. The motor control functions can be accessed using a custom 
function call to our system and will guarantee that all appropriate settings are 
altered, just like when the laser settings were altered. With the motor, we will also 
need to put constraints. We will have to have a maximum and minimum value for 
speed and angles. We also have to check each setting that the user chooses to 
check for problems during runtime. Now that we developed the final 3D laser 
range finder, we can create curves that can be supplied to operators to know the 
proper operating constraints. 
 
The communication system provides the ability to talk to our 3D laser range 
finder. We will have a default and persistent method of communication via an 
Ethernet connection that will always be able to listen and set settings. This could 
be considered our ‘direct access’ method. Using this, users or applications could 
communicate to the rangefinder to turn on or off settings and alternative 
communication means. A secondary communication system could be developed 
that will communicate through a website. This would allow the user to see and 
set configuration information in a more convenient and quick manner. This 
setting would have been optional and could be turned on and off depending on 
the user preferences.  
 
The output display for the user is provided by obtaining multiple single scans and 
buffering them to create a complete image. Based on the speed of the scans, it 
may take less than a second to create a complete scan. This reduces the load on 
the system by just getting the raw data instead of having the render take up 
processing time and power on the raspberry Pi. The data can be viewed in a 
number of different ways. The user can view just the point cloud information and 
will see only dots that form the 3D environment. The user can view a color coded 
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range image that provides a depth map represented in 2 dimensions. The user 
could also have viewed an overlay image where the 2D image is transposed onto 
the 3D point cloud if it was developed. Finally, the HD camera 2D image could 
also have be requested. This image would not have any manipulation, but would 
allow the user to see what is seen without any form of translation. All of these 
settings will be configurable on the 3D laser range finder. 

4.2.9. User Interfaces 
 
There is not a single interface for the 3D laser range finder. Since a 
communication protocol is being developed, this has the possibility to have an 
interface developed for just about any platform. For development, as well as 
other Linux platforms, we will be creating a basic graphical interface. This will 
supply us with an ability to see all of our available settings, change settings, view 
images, render images, and export data. 
 

 
Figure 35 Graphical User Interface Mockup 

 
In order to create the graphical application we will first created a command line 
application. This command line application was able to process our commands 
using a known set of instructions. These instructions will correlate to the different 
classes we are developing. We choose to use a command line version of the 
application because it will simplify debugging process since we will not have to 
debug between the window representation and the actual program processing 
the image data.  



64 

 

 
Once the command line version of the application is completed, we created the 
graphical interface. Qt is a multiplatform framework that provides simple window 
management. The following bulleted lists display the current officially supported 
operating systems. 
 
Desktop Platforms 

Windows 
Linux/X11 
Mac OS X 

Embedded platforms 
Embedded Linux (DirectFB, EGLFS, KMS, and Wayland) 
Windows Embedded (Compact and Standard) 
Real-Time Operating Systems, such as QNX, VxWorks and INTEGRITY 

Mobile platforms 
Android 
iOS 
Windows 8 (WinRT) 
BlackBerry 10 

 
All, or portions, of our application can be ported to any of the listed supported 
platforms. The work load may need to be offset onto the original hardware so 
calculations can be processed locally when the client hardware may be lacking 
the processing power or support that may be required. Qt uses C++, which is 
useful since our libraries and application will all be written in C++ as well. 
 
While developing the code for our Qt application we were using a Qt supplied Qt 
creator for C++. The Qt creator is custom tailored for developing Qt applications; 
unlike eclipse which utilizes a plugin to allow for creation and modification of Qt 
C++ applications. Using Qt we can create a C++ library of our application instead 
of using the command line version. We will have needed to develop the 
command line version anyway first to test, but this allowed for a more 
streamlined graphical version of the application. 

4.2.10. Network Access 
 
Our 3D laser range finder communicated via a network. Onboard of the raspberry 
Pi is an RJ45 connection. This connection can be utilized by network traffic to 
provide a basic network access. This is the valuable to the project as it is the only 
method to obtain the point cloud data. Although, it is not in our currently design, a 
website could have served as a testing mechanism or feedback mechanism 
when our range finder is not attached to another system. A basic website could 
be provided that displays the information from the range finder. By default the 
most basic of information would be available on a plain website. We will provide 
the source and instructions to any users of our range finder in order to customize 
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the output.  
 
The web service would need to be hosted locally by an onboard web host called 
apache. This could provide multiple socket connections to the board and return 
values that have been made available to it. The reason this onboard system is so 
light and low priority it serves little purpose for actual production usage, but may 
assist in development, alignment, or setups. An option for end users of the 3D 
laser range finder may be that they create their own website to interact with it. 
Since the information will be available to their existing system, they may have 
wanted to send that data back to a home base and from there supply a website, 
app, twitter feed, etc… with information. This way the end user can relocate the 
resources off of the main system so it can work more effectively. 
 
The hosting software would most likely be running a PHP server. PHP would 
allow us to interact with our system dynamically without having to recreate the 
entire code for the site. In order for the PHP system to work, we would need to 
implement a sort of swap file for our data that is accessible to both the Apache 
server and our main control application. Common swaps file for use in a MySQL 
database. These databases could allow for multiple applications to connect, 
access, and modify data at the same time. This would give us the most up to 
date information in order to output to the server. 

4.2.11. Output Protocol 
 
The most important part of our system is the output information. In the case of 
our 3D laser range finder, we had hoped to have multiple ways to access the 
data. Originally, we would make our data accessible to other systems using a 
custom TCP protocol, however, it was abandoned after testing. In order to 
communicate, we would have first needed to establish a serial connection. The 
connection would have a default port and baud rate that can be customized in 
the main application.  
 
The main application would listen for a client request indefinitely. Once a 
connection is established, then the system will be able to take instruction and 
output data. We will have different types of data, each of which will have 
corresponding codes. These codes will be established within our communication 
protocol. Our protocol will be able to be encapsulated within another form of 
communication such as RS232 or TCP, so long as our final result allows us to 
send and receive data to and from our system in a quick and accurate form. 
 
Within our original communication protocol we wanted to  establish a form of 
error check. This error checking will consist of creating a cyclic redundancy 
check (CRC) code based on the contents of the packet. This CRC code will be 
accessible, but not required. We would have allowed for the option to ignore the 
CRC code in the options. Some applications may want to have the CRC code to 
insure they receive perfect data each time as well as a complete set of data. In 
order for CRC checking to occur, both sides of the communication would have to 
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have the CRC hash table. This would have needed to be an agreed upon hash 
table, which the default will be provided by us, but some applications may wish to 
alter this table to allow for larger data sets or faster calculations. 
 
Overall, the communication protocol will be similar to that of existing protocols 
such as the transmission control protocol (TCP) or the user datagram protocol 
(UDP) in the sense that they will have a complete reconstruction of data or allow 
for data loss. That decision would have depended on the user and depend on the 
option or action that is selected.  
 
Our original protocol would have included a header file that contains information 
about the data packet. It will start with a packet declaration. This is a known bit 
sequence that will tell the receiving end that a packet is starting. The length of 
this sequence would be decided upon after testing, however, we would have 
chosen to start with a 4 bit sequence to begin with and move up from there if we 
encounter false starts. If we chose to go any lower, we may get many false 
patterns of the same sequence and will falsely tell the receiving end that a new 
packet has started. After the header we will have the total length of the packet. 
This will allow the receiving end to retrieve the packet out of the buffer and begin 
its decoding. 
 
After the initialization code and the length, there would have been a 3 Byte action 
code. Having a large action code will provide us with more than enough unique 
action calls and will leave plenty of room for more. These calls are for specific 
requests that correspond to a known action. For instance the code AAA [hex] 
may correspond to the reset command. The receiving end will see 1010 1010 
1010 [binary] come in the action command portion and know that the system will 
need to be reset. This sort of command will not have any more than this 
information, so there would be no need to have any additional information. 
However, for complex commands, a form of subcommand may be necessary. 
 

Packet Section # Bytes 

Initialization Byte Sequence 4 

Length 2 

Action Code 3 

Packet Data 16 

  Sub-Packet Data 
 

CRC 1 

Table 8 Packet Layout 
 
Some commands would require more complexity than a 1 step command. To be 
able to accommodate for these commands there would have to have a tiered 
structure. The action command will in turn have another sub-action command. 
This structure could potentially continue until we reach the limit of the maximum 
packet size. For example, if the action command for moving the laser scanner 
was requested, then how would it know where to move it? How fast? This action 
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command for the laser movement will be received, but then a second action 
command will follow stating which direction. After this the packet will contain the 
information that states the information of where to go and how fast. This structure 
for decision making will allow us to create in depth, accurate and useful 
commands that are accessible to the connected system. 
 
Another major benefit of creating a tiered custom protocol is that the system can 
be thought of to be object oriented. The information is in container form and can 
be represented in an easy to read, easy to understand, easy to implement 
manner. Also, due to the ability to have dynamically sized commands and new 
commands, the host system can be updated with new commands and action and 
protocols without breaking the client. The client could be updated to allow for new 
commands or to continue to utilize the old commands just as it would have in the 
past. 
 
There are many types of commands that we would have to handle. There was 
the query and response commands that will be short and finite. These include 
items reported values or canned responses such as a ‘Ready’ command or a 
version number request. These commands let the attached system communicate 
with the 3D laser range finder and obtain information about its setup values. This 
would allow the connected system make decisions based on those values and 
possibly update the values if need be. This brings up the next type of commands, 
which are settings. Setting commands would provide a valid value to be set 
inside of the program. Given the nature of our protocol, we can do error checking 
on the host side before actually using these values to insure that they are valid. 
Once a setting is set or denied a response is sent back of either OK or ERROR. 
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[Base16] 

   

A01 Initialize System Requests that a connection be established 
A02 Start System Tell the system to start scanning and 

generating data 
A12 GetReadyStatus Query Requests a confirmation that the system is 

ready. Returns OK, KO, or nothing 
A13 GetVersionInfo Query Returns the version of the protocol 
A14 GetCurrentPosition Query Returns the current angular position of the 

3D scanning mechanism 
A15 GetLaserSpeed Query Returns the current speed setting of the laser 
A16 GetMotorSpeed Query Returns the current speed setting of the 

motor 
A17 GetCameraRefresh Query Returns the refresh rate of the camera 
A18 GetErrorCodes Query Returns any pending error codes 
B15 SetLaserSpeed Setting Set value of laser speed 
B16 SetMotorSpeed Setting  Set value of motor speed 
B01 SetMinimumScan 

Angle 
Setting Sets the minimum scan angle from 0 - 180 

degrees 
B02 SetMaximumScan 

Angle 
Setting Sets the maximum scan angle from 0 - 180 

degrees. 
CD1 GetDepthFrom 

Coordinate 
Image  Returns the best value of depth based on the 

provided single coordinate 
CD2 GetDepthFrom 

CoordinateRange 
Image Returns the depth values of a given range of 

coordinates 
CD3 GetDepthImage Image Return the entire depth image matrix 
CD4 GetDepthColorized 

Image 
Image Return the depth image rendered with color 

to designate distances 
CC1 GetCameraPixelData Image Returns the value at a given coordinate from 

the camera 
CC2 GetCameraRange 

Data 
Image Returns the values of a given range from the 

camera 
CC3 GetCameraImage Image Returns the entire camera image 
A0A EmergencySTOP System Emergency Stop. Stop moving.  
A1A Stop System Stop gracefully 
AAA Reset System Reset software and positions 

Table 9 Original Laser Range FInder Protocol Codes 
 
Our initial protocol also included constructive error responses. When our system 
receives a bad command, it will try and return the error code and/or message 
with it. For instance, if the command ‘move laser left 200 degrees’, we will return 
an error because the laser can only go 0-180 degrees. Depending on the 
settings, the system may move to the furthest constraint of 180 degrees, but still 
return an error because it could not complete the full turn. The error packet will 
include an error type code, the original command code and a constructive ASCII 
message. The ASCII message is in plain text. This would be so the attached 
system can include a human readable error message that can be used to 
troubleshoot. 
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Error Code Meaning 

F00 Invalid Command 

F02 Incomplete Command 

F04 Value Out of Bounds 

F08 Bad CRC 

F16 Duplicate Request 

FAA System Not Ready 

FAB Hardware Unresponsive 

FAC Timeout 

Table 10 Error Codes 

4.2.12. Command Sequence 
 
The scanner will function by providing feedback to the external system that 
information has been received and executed successfully or not. This allows the 
external system to have an absolute understanding of what is currently being 
performed on the scanner. This procedure can be seen in the figure below that 
demonstrates how the system should have operated with these commands and 
errors. 
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Table 11 State Diagram for Command Protocol 

 

The actual method that we utilized in our system was different from the previous 

described TCP request/response method. We originally designed the above system, but 

after testing, we found that given the amount of data that we were processing, it was 

nearly impossible to get data in real time. In order to maintain the ability to have real-

time imagery, we made available the most recent scans as they came in. 

Using UDP multicast, we push out around 1080 points every 4 ms. On the server side, we 

have a queue of scan vectors. A single vector of around 1080 points is sent and then the 

next, and the next, etc… As this is occurring, the Pidar system is adding on points to the 

end of the queue. If the queue grows too large due to some processing delay, the queue is 

wiped clean. This is necessary as the data is only valuable if it is real time data. 

 

Using UDP, we do not have to wait for a response or correction from the client system. 

TCP required us to wait for a response and validate data and this took far too long. The 

UDP system lets the Pidar system send the data and forget it. Streaming services opt to 
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use UDP packet data since it allows for realtime applications that loss is fine. If we lose a 

few points in a million, it will not severely harm the client system. The other benefit is 

that using multicast, any client on the network can obtain the points. This can allow for a 

robot to analyze the data at the same time as the user and they can debug more easily. 

 

The command structure to setting points is done using UDP as well, but is done via 

ASCII. A command such as “CS10” changes the speed to 10 rpm. The server will then 

respond by saying “OK”. Again, UDP is best effort and is not guaranteed, so it is up to 

the client to verify that it has occurred. 

4.2.13. Output 
 
There would be different types of images and data that would be able to come 
out of our system. Requests by the attached system would have mandated which 
types of images are create and reported back. Although we would like to have 
provided the ability to render images on the system, it is not recommended due 
to the limited resources available. The optimal situation was to use a 3D 
rendering software to render our raw point cloud data. This allows the user to 
rotate an image and have the ability to change the view perspective. If we render 
the image on the system it will be static and from only our default viewing angle. 
The Qt software we are developing will be able to run under Linux and be able to 
interpret our output data to display a few basic images. Since we will be 
developing a custom API to connect to our system, anybody will be able to 
access the data that has access to the device. Custom software could be written 
that calls and utilizes data differently. The 3rd party software Mesh Lab can be 
utilized to display our point cloud data information after it is saved from our 
custom client. 
 
The static rendered images that we will be producing will utilize the Point Cloud 
Library and OpenCV. Between these two libraries, we would be able to identify 
key points in the images; correct the images to display properly, render the 
images using key points, and output the data. The types of images we create can 
be very detailed or very shallow. We can also filter out pieces of images that are 
too far to matter. If the external system does not want to see anything beyond 3 
meters, then the system can make anything past that point null and only show 
the pieces of objects that are within the distance threshold.  
 
Although these images will be close to what we want, they are not our complete 
images. In order to display the entire image, we will need to render the full 360 
degrees. The system can be set up to only utilize a certain range of angles, 
which would automatically be used for rendering.  
 
In order to display 3D data within a 2D field, we will colorize the image based on 
color key to represent depth. Using a custom written function, we are able to 
colorize the image based on distance from the Pidar. Other images we can 
create are point images. This will merely map the points of the data in 3D space 
from a specific perspective. The size of the dots will change based on the 
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distance away from the camera. This will provide a basic view of the key points 
that make up the depth imagery. This type of image is less resource intensive to 
produce since it is using just the coordinates from the point cloud data to create 
the image. Another image we would have liked to produce would have been a 3D 
mapped image that has an HD camera image overlay. This would be the most 
intensive image to render as it will require the use of the OpenCV library as well 
as the point cloud library. It will need to look for key points, skew the image 
appropriately based on calculable data, and shift images based on depth. The 
view of this image will not be able to be used from the center perspective as 
everything will look 2 dimensional. This means that the perspective viewing angle 
will need to be shifted off center. 
 
The benefit of our method for outputting data is that it is much more scalable and 
dynamic than a single output device. The network protocol will allow for use from 
different external systems. The API can be scaled and upgraded without 
damaging existing setups. The output imagery is useful to the users that are 
using this device as they will be able to see and understand what is being fed to 
their system. The output imagery can also be upgraded. If we develop a new 
rendering method, we can then upgrade the software and be able to provide 
those images additionally. The overall ability to be able to update, modify, and 
completely customize our sensor will make it viable for almost all relevant 
applications. 

4.2.14. Linux 
 
This project is using Raspien for the Raspberry Pi ARM microcontroller. This is a 
deviation from the Debian Linux distribution that is specifically tailored for the 
Raspberry Pi. This port provides an improved “hard float” calculation that allows it 
to utilize the floating point hardware calculation of the ARM processor. We will be 
able to use a graphical environment and therefore interact and monitor our 
software while we are developing and debugging. To alleviate some resources, 
we chose to remove the added window manager to solely provide a console 
based environment. 
 
The Linux environment serves a great purpose for us. It allows us to utilizing 
multitasking. In order to scan data, interpret data, and output data, we have to 
multitask. This is all done on the ARM processor and is completed using 
threaded applications. We are prioritizing our processes as well to ensure that 
the most important processes get the CPU first. The highest priority application 
will be the laser scanning software. This must always remain fresh data or else it 
will completely undermine the whole project. If the project were to give priority 
elsewhere, than our LIDAR system may in fact feed incorrect information. This is 
unacceptable because the output of this system will be treated as true every 
time. So that is why the scanner portion has highest priority. 
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4.2.15. Raspien OpenCV Package 
 
The OpenCV library can compile for Raspien and provide the image translation 
functions. However, we did not end up using any image manipulation libraries on 
the raspberry Pi. We would have written the code that utilizes OpenCV as well as 
the interpretation software to generate the 3D point clouds. OpenCV would serve 
to allow for image homography alignment for our webcam image and our 3D 
point cloud. This will be for display. Inherently, this would have provided a 2D 
image that can then be used for other calculations or for demonstration data. 
 
We would be using the image processing, or imgproc, portion of the OpenCV 
library to fit the image from our webcam to a round image. The Structural 
Analysis and Shape Descriptors portion of the library will allow us to perform 
these tasks using algorithms that have been developed, testing and run 
numerous times by many people. This would leave us with the task of collecting 
the data necessary in order to provide the correct input.  
 
The Camera Calibration and 3D Reconstruction portion of the OpenCV library 
would have been used once we have our complete x, y, z scan. We would use 
the function such as findHomography in order to correctly map our image. The 
function calibrateCamera will be used during our development, but will not be 
required during the running process. However, if the camera were to have 
changed, then the code would need to be recompiled using the corrected values. 
 
ReprojectImageto3D would have assisted us in rendering the final images that 
will be human readable. This will allow for debugging and for fast understanding 
and representation of what is being seen by the LIDAR. 

4.2.16. Programming Languages 
 
C++ was the language of choice for our application. This was chosen because 
the most difficult communication we will encounter is the laser scanner and the 
library provided is in C++. Additionally, the ability to allocate and clear memory 
when we need it is crucial to our program as we need it to be as efficient as 
possible. Other languages such as Java do not allow for this level of memory 
efficiency. We are utilizing the latest stable version of GCC, a C++ compiler. 
 
Project setup will utilize the cross-platform open-source build system known as 
QMake. Essentially Qmake tools allows for developers to create projects which 
are platform, and usually operating system, agnostic. The novel idea can allow 
for programs and projects written on closed source IDEs and systems such as 
Windows to be setup in a way which when distributed can instantly be built, 
compiled, and linked using any other operating system or IDE (theoretically). The 
build scripts written using QMake are output from the Qtcreator software 
automatically. This powerful tool enables developers who switch between 
different systems frequently the power to move those desired applications with 
them. Many of the libraries and software packages used and mentioned, like 
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OpenCV and PCL, all leverage the QMake build system. This widely used build 
system will enable the LIDAR system proposed to be cross-platform as originally 
intended and required by the given software specifications. QMake can enable 
greatly enhance the efficiencies and logistics required in teamed programming 
applications since it does not require any given computer to have specific 
software or virtual machines for the applications to compile.  

4.2.17. IDE 
 
The programming environment that we utilized on the Raspberry Pi will be qt 
creator. This will allow us to have a simple GUI based method of interacting with 
our program. For the majority of the code, it will was written elsewhere and then 
placed into our project on the Raspberry Pi. Debugging was done using the 
Raspberry Pi since we will be heavily dependent on memory, pins, libraries, and 
COM ports. This gave us the freedom to use any regular IDE such as eclipse or 
QT for C++. 
 
Maintaining our code was performed using a GIT system. This allowed each of 
us to develop code and then merge that code into our main source. It provides us 
methods of reversing if we need to. This also provides a cloud-based backup 
system of our code in the event that a hard drive has become corrupt. Using GIT 
we each need to have a uniquely identifying login. This will allow us to have 
individual branches that we can each work on and can merge when necessary. 
IDEs such as eclipse have but in GIT source control plugins that we utilized that 
made the task easier and more streamlined. 
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5. Executive Design Summary 
 

5.1. 2D Laser Specifications 
 
The figure below shows the Hokuyo UTM-30LX 2D LIDAR dimensions and 
footprint. This schematic was referenced heavily as prototyping of the 3D 
assembly continues into the subsequent semester. This laser has two cables 
providing data and hardware synchronization. It has a footprint of 60 by 60 by 87 
mm and weighs approximately 370 grams. 
 

 
Figure 36 Hokuyo 2D Dimensions 

(Reprinted with Permission) 
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The table below details the outputs on the robot cable attached to the Hokuyo 2D 
laser. This cable is the second included with the Hokuyo and provides additional 
functionality which provided useful information into the system generating the full 
3D scan data.  
 

Color Function 

Brown +12V 

Blue 0V 

Green Synchronous/Detection output 

White COM output (0V: common to power) 

Table 12 Hokuyo Cable Pin Out 
 

5.2. Software Structures 
 
The following diagram details the usage in a normal operating situation using our 
original communication methods. It demonstrates the sequence of events that 
occurred in order for the system to be able to return scan data. First the system 
creates an initial connection. Upon connection the system will initialize the 
peripherals such as the laser and motor drivers. The control system was to 
respond with ‘OK’ to let the external system know it received its request. The 
external system then needed to poll the control system to find out when 
everything is ready. When the scan begins the control system will continuously 
get information from the sensors until it is told to stop. The external system could 
have retrieved that information at any time. 
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Figure 37 Sequence Diagram for Normal Operations 

 

 
Figure 38 Sequence Diagram for Setting Changes 
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5.3. Parts 
 
The following table details every part currently acquired by the group for 
assembly during for prototyping and implementations phases. Parts missing from 
the table may include specialty connectors or assembly equipment available to 
the group through various labs on campus or via the robotics club facilities.  
 

Part Cost Location 

Hokuyo UTM-30LX 2D Laser 
Range Finder  

$6000 Donated by UCF Robotics Club 

Raspberry Pi Model B 512MB 
RAM 

$39.95 http://www.adafruit.com/products
/998 

LM7805 Voltage Regulator 
12V to 5V USB DC Converter 

$1.25 https://www.sparkfun.com/produc
ts/107 

Dynamixel MX-28T Robot 
Actuator 

$219 Donated by UCF Robotics Club 
 

Mounting Bracket  
 

Donated by UCF Robotics Club 
 

Tilt Bracket  
 

Donated by UCF Robotics Club 
 

Bearings  
 

Donated by UCF Robotics Club 
 

Logitech Business Pro 9000 $65 Meritline.com 
PCB Board  

 
http://oshpark.com/ 

LEDs  
 

Donated by UCF Robotics Club 

Resistors  
 

Donated by UCF Robotics Club 

12V Power Supply  
 

Donated by UCF Robotics Club 
 

Voltage Regulator  
 

Donated by UCF Robotics Club 
 

8-channel Bi-directional Logic 
Level Converter - TXB0108 

$0 http://www.ti.com/product/txb010
8 

Waterproof Connectors  
 

Donated by UCF Robotics Club 

Idle Rollers  
 

Donated by UCF Robotics Club 
 

FTDI Chip USB-RS485-WE-
5000-BT 

$42.93 http://www.alliedelec.com  

Table 13 Parts List 

5.4. Program Functions 
 
The image classes of our program will handle the input, output, and generation of 
our image. The following diagrams are split up between the image rendering and 
the data communication. However, both of these are part of the same program, 
but we have separated them logically to get a better understanding. This includes 
the laser scanner point cloud, HD camera, library functions and communication 
functions. Each method would have contained pertinent functions that pertain to 
the class. This containment will allow for easy updating and expansion. It also 
allowed for development section by section.  

http://www.adafruit.com/products/998
http://www.adafruit.com/products/998
https://www.sparkfun.com/products/107
https://www.sparkfun.com/products/107
http://oshpark.com/
http://www.ti.com/product/txb0108
http://www.ti.com/product/txb0108
http://www.alliedelec.com/
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In order to generate an image for output, the system would first need to obtain an 
image. Obtaining the image will require the communication to the hardware. In 
the Laser_COM class we will have the functions available to talk to the laser and 
obtain the correct information based on the settings. If we require a camera 
image, that will be taken too, from the Camera_COM. This information is then 
brought to the control system and sent to the image functions. Here the Image 
will pass through and between the OpenCV and Point Cloud Library calls, return 
to our functions and generate an image. After the image is rendered, we could 
have displayed data on top of the image. This data can provide information about 
the current setup, the current values such as the closest distance, as well as a 
timestamp. Then the image sent back to the control system, ready to be output. 
 

 
Figure 39 Image Class Diagram 
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Figure 40 Communications Class Diagram 

6. Construction, Testing, and Evaluation 
 
With an iterative design process in mind, testing of individual components was 
conducted whenever possible. Testing of the rotating assembly with only the 
motor attached will allow for comparison of real and expected dimensions and 
rotation angles. PCB tests were conducted to ensure stable power rails and 
reliable distribution. Iterative testing ensured a smooth integration process and 
provided a method for detecting any issues which may arise from any given 
component. Software interfaces were ultimately tested with at least one of the 
Robotics Clubs platforms to ensure smooth operation and interoperability. 

6.1. 2D Laser 
 
Building a system with a high dependency on the performance of a single sensor 
indicates that rigorous testing of said component must occur. Having chosen to 
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use the Hokuyo UTM-30LX sensor due to its capability of outdoor (direct 
sunlight) operation the 2D performance characteristics of the sensor must be 
measured experimentally both inside and outside. Given the expected 
performance outlined by Hokuyo analysis of the actual performance of our exact 
sensor must take place. Performance metrics generated by experiment will 
greatly enhance overall 3D reconstruction accuracy and is a priority for 
evaluation. Testing was performed in both outdoor and indoor environments with 
a number of tests for determining distance accuracies in the full 270 degree field 
of view of the sensor. To reliably test measurement accuracy the testing surface 
and reflectivity (emissivity) must remain consistent across all tests. While it is 
impossible to have a true black body for a completely consistent testing platform 
any surface with a darkly colored matte surface proved reliable enough for 
testing in both indoor and outdoor environments. The test was to take 
measurements from a known location and then compare them with the laser data 
output. We found that the laser output data was accurate within fractions of 
centimeters. 

Aside from measurement accuracies of the laser validation of other hardware 
features will be needed to validate complete operation. The hardware 
synchronization signal of the system gives the project the capability of faster 
processing of laser data. Given the event driven nature of the project the sync 
signal accuracy must be measured against expected update rates of the sensor. 
We validated the pulse times and duration within a specified window will allow for 
measurement of this signal to verify the projected update rate of 40 hertz.  

6.2. Motor 
 
Upon receipt of the motor various aspects must be evaluated for verification of 
those advertised. Testing of the speed, torque, and encoder accuracies will be 
most vital. Testing of the motor was done in line with testing of motor 
communication from our microcontroller. This allowed for seamless transitioning 
during project construction and is the earliest time at which we can test the 
system. Using various load weights and protractors, load analysis and encoder 
accuracy were measured. With no viable method to evaluate max motor speeds, 
software measurements were used instead. This makes the accuracy of the 
encoder much more important than any other specification of the motor. Other 
physical facets such as weight and dimensions were examined to ensure proper 
weight distribution. Load testing was conducted in order to monitor actual power 
consumption on average and the effects on theoretical max speeds. Max power 
consumption was also tested as the batteries driving the system have maximum 
burst discharge rates which must be adhered to.  
 
We found that the motor was not actually going as fast as it reported. So in our 
code we have compensated for that speed adjustment and calculated actual 
speed based on real time timing data. The power tests proved to work within 
operating range and met all of our expectations as we never broke 2 amps even 
when holding a motor stall. 
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6.3. Microcontroller 
 
To ascertain that the microcontroller we have is operating properly all theoretical 
input and output functionality needed were examined. While typically certified 
before delivery as a consumer grade product it is was necessary to test base 
level operations before systems integration can occur. The RaspberryPi 
functioned properly based on the datasheets provided. 

6.3.1. Power and Regulation 
 
Verifying proper power supply voltages and short circuit identification are the 
most basic forms of testing evaluation necessary for proper microcontroller 
operation. Using a digital voltmeter resistance we measured across all power 
rails to every ground pin to ensure that the value read is much greater than 0Ω. 
Upon successful completion of this testing, further visual inspection of the board 
for possible causes of shorts or broken traces was conducted. Assuming that all 
solder joints are full and complete further checks for possible manufacturer 
defects were needed. These checks verified that all soldered components 
including capacitors and resistors match those to the expected and designed 
values for the board. 
 
The regulators chosen for the PCB designed were chosen to be small, and many 
of them are surface mount based solutions. With our finished PCB, we soldered 
and tested each component as it went on the board. We tested for bridges, 
proper operating values, and other connectivity problems. Once we had the 
complete PCB soldered we tested and found that our voltage was a little low. So 
we adjusted our resistance value going into our regulator and brought our voltage 
up to our optimal voltage. 
 
Below is a list of all equipment required to carry out all of the hardware testing for 
the PCB and microcontroller. 
 

 Multi-meter 

 Oscilloscope 

 DC current meter 

 Logic analyzer 

 Microscope 
 

6.3.2. Input and Output 
 
Microcontrollers provide many different forms of signal processing through on 
board circuits and hardware. Some signals may be converted between digital 
and analog via ADCs or DACS and others may be passed directly through from 
the MCUs themselves. Proper verification of these widely varying inputs and 
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outputs will provide the group with a uniform testing platform which can perform 
in the variety of environments expected of this system. Testing of the inputs and 
outputs of the MCU tested the following functionality at minimum: 
 
1. Digital Input and Output 
2. Analog Input and Output 
3. PWM Signal Generation 
4. TTL and Serial Connections 
5. I2C and DACs 
 
Most output signals from the microcontroller were evaluated using the simplest of 
equipment, namely a multi meter and oscilloscope. Serial based communications 
involved more hardware as connections to physical devices need to be made in 
order to appraise two way communications. More expensive supplemental 
testing hardware such as signal generators and logic analyzers would enable the 
group to test in a more controlled fashion. The robotics club facilities provided the 
group with all necessary testing equipment for all signals into and out of the 
microcontroller.  

6.4. Software Unit Testing 
 
Upon completion of the basic system capabilities including point cloud formation, 
3D depth imaging, dynamic system configuration, and networking communication 
heavy software testing must incur to test all race conditions in the system. 
Reliability is the key of software unit testing and is a key component in any good 
development life-cycle. Below is a list of unit tests which were performed for the 
system to stress and verify all possible configurations work and do not throw 
unexpected errors or crash the laser’s operation. This testing also ensured full 
functionality of every component as the system is formulated. 
 
1. Verify that the commands being set the PC side of the network are getting 

changed on the 3D laser side.  
 

2. Verify that setting changes do cause real-time closed loop control change of 
the continuous sweeping of the laser to accomplish the desired resolutions. 

 
3. Test that a hard reboot of the system will not cause a total system failure 

requiring a manual login to restart software applications. 
 
4. Tests of multiple users on the same local network subscribing to the lasers 

data does not interfere with operation or the receipt of other users of the data. 
 
5. Verify that the microcontroller is capable of having the laser on a different 

USB port without having to manually enumerate it. 
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6. Test that the output timing of the data adjusts to the resolution and the 
rotating range assigned to the laser.  
 

7. Test each application in tandem to ensure proper permissions over the 
network as well as resource limitation. 
 

8. Verify proper coordinate system transformation over the entire scanning 
range of the laser.  
 

9. Test actual versus theoretical timing of the Hokuyo’s synchronization signal to 
test response time of interrupt driven application. 
 

10. Tests setting motor shaft positioning with entire assembly mounted to ensure 
accurate control within tolerance of motor. 
 

11. Testing of proper decay of point clouds over time as new scans are received. 
 

12. Tests of 2D laser parameters and effects on 3D and other output data must 
be verified for consistency. 

 
We were able to successfully perform all of the above tests at the completion of 
the project. We had to adjust the methods of communication in order to maintain 
he real-time ability. We also had to speed up laser and motor communication 
rates to allow for the most stable performance due to concurrency. 

6.5. System Performance 
 
In order to create the best system, we analyzed the system under different 
conditions. Testing under the different conditions will allowed us to choose 
constraints for sensors, ideal readings for sensors, and other observable data 
that can be used in setting the default settings. In order to create code that can 
handle an issue, we must first have knowledge of the issue. This information can 
potentially have a dramatic effect on the method of operation in the software. The 
hardware may not need nearly as much alteration due to the fact that we are 
setting our constraints based on hardware and the environment. 

6.5.1. Regular Environment 
 
Our 3D laser range finder can be used in a plethora of situations. Using the 
scanner in inside conditions will prepare the scanner for use in enclosed areas. 
“Inside” areas may include a large or small area. The differences between large 
and small areas can change the readings dramatically. If the sensor is in a room 
that is 10 meters x 10 meters x 10 meters, then it may be able to see the walls. If 
we are in a giant warehouse and the room is 100 meters x 100 meters x 100 
meters, then the system may not be able to see the walls and we will need to 
know what that looks like.  
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The testing scenarios that will be utilized when testing under a regular 
environment are detailed in the following list: 
 

1. A small room that is clear of any obstacles:  
This room will provide us with the ability to see how the system reacts to just 
seeing the walls of a room without any interference. During this test we collected 
the data and the feedback from this allowed us to alter the interpolation of points 
in a different manner. Once we tested again, we found our lines to be straight 
and have a perfect rendering of the environment. This acted as our baseline 
scan. 
  

 
Figure 41 Camera Image of Clear Hallway 
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Figure 42 Point Cloud of Clear Hallway 

 

2. A large room that is clear of any obstacles: 
Utilizing this type of scenario may allow us to see how the system reacts to an 
area that may not provide any feedback through our sensor. This could be 
considered null data and we would have to handle how this scenario plays out. 
We found that areas that reach beyond our 30 meter limit were unable to be seen 
and that our system would not return the points. 
 

3. A small room that has a few small objects: 
Having just a few obstacles will allow us to test identifying objects. This could 
provide us information on how the system will identify and align imagery. This 
test showed us that we can successfully view objects in small room, however it 
shows that items that are closer cause further items to be unseen has it creates a 
larger shadow. 
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Figure 43 Depth Colored Point Cloud 

 

4. A large room that has a few small objects:  
Without the knowledge of a rear wall, the system may interpret data incorrectly. 
In the event that we have small objects with a theoretical infinite background, this 
may provide odd results. This data will be crucial in identifying objects. The 
objects within the room were able to be seen if they were within 30 meters. 
 

5. Inside a small room while the system is at different angles: 
 We will test at different angles. We will start at 90 degrees and then continue for 
180 degrees of rotation. Rotating the system in an inside environment will allow 
us to view how the system reacts to a floor, wall, and obstacle at different 
orientations. We may find that we need to add an accelerometer to the system in 
order to adjust the orientation or perhaps it will just create the point cloud data as 
is stands. We found that it does not matter where we start the rotation as it is 
continually updating and the angle is always reported correctly. 
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Figure 44 Range Image Comparison With Camera Image 

 

6. Inside a room with people moving:  
This will give us the ability to see the information obtained when objects are 
moving non-linearly and in motion. Inside environments may include people 
regularly and this scenario could easily be one of the most common. We will 
need to see how the system handles this sort of movement and what we may 
need to do to compensate for a faster or slower refresh rate. We found that we 
need to adjust the speed of the motor for faster scans and expire the points 
faster in order to have a decent refresh rate.  
 

7. Inside a room with one object slightly covered by another object: 
This scenario will allow us to see how the system handles an item that is only 
partially seen that may look to be part of another object. This will give us the 
information that could help us fix or develop the functions to transpose images in 
a more efficient or correct manner. If an item is covered, we found that we cannot 
see the item at all.   
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8. An object that moves progressively closer to the sensor: 
If an object is moving towards the scanner or the scanner is moving toward the 
object, then the size and depth of that object will change. We will need to 
document, test, and understand how this motion will read on our point cloud data. 
This system may create something that is skewed instead of normalized. 
Given a decent refresh rate on the client. It does not matter if an object moves 
closer as the point cloud only shows the latest possible data. 

6.5.2. Outside Environment 
 

The outside environment may cause another group of issues with our system. An 
outside environment is susceptible to additional conditions such as humidity, fog, 
lighting, rain, wind, and other weather conditions. Additionally there will be less 
uniformity in an environment when using the sensor outside versus an inside 
room. The following list is a few of the testing scenario for outside use. 
 

1. Regular weather, normal sun: 
This test will give us a baseline for the remainder of our tests. The lighting alone 
could cause issues with our system and we may need to adjust our code if it 
realizes that the unit is being used outside. We found that the point cloud renders 
the same as indoors except there are far less points due to the sky being 
invisible.  
 

 
Figure 45 Nighttime Scan Outside 
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2. Cloudy weather: 
We will run the system under different circumstances while the weather is cloudy. 
This will allow us to see if the laser sensor can take readings when the lighting is 
low. Same as regular weather testing, the clouds made no difference for our 
scans. 
 

3. Rainy conditions: 
Rain is a tangible object and may be picked up on our laser sensor. Using our 
system in raining conditions may prove that a valid image may not be able to be 
created, or perhaps there is a way to counter this with an algorithm to remove the 
raindrops. Rain made some of the points disappear as well as some of the 
objects incomplete. The rain changes the reflectivity of an object and objects that 
are too reflective are not seen correctly. 
 

4. Motion on uneven surfaces: 
We will move the sensor across an uneven area using a vehicular robot. This test 
will provide us the information when the scanner does not have a uniform ground 
level and may give invalid readings. We will need to know how this information 
looks so we can invalidate data or at least flag it as uneven. Motion on our client 
creates an odd image. It places objects in a position of existing objects until the 
full scan is updated. The client will need to utilize some type of motion sensor to 
make adjustments. 
 

5. Many people moving: 
It is not uncommon for large groups of people to be moving around at a single 
location. This could be a walkway on the UCF campus. This test will demonstrate 
how the scanner can pick up moving objects of different speeds and we can see 
how it comes together. This may help us decide in default scanning values. This 
tested led us to have some “ghosting” as the images refreshed. However, it was 
able to see everyone in the image as long as they were visible. 

6.5.3. Project Summary 
 

Our 3D laser range finder will provide the ability to view an environment in 3D. 
This application can be used on many external systems as it will provide the eyes 
to any machine that decides to use it. Our system is robust, scalable, and 
successfully delivers the item requested by the Robotics Club at UCF. 
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