

Pidar:
3D Laser Range Finder

Group 27

Jonathan Ulrich
Andrew Watson

Sponsored By:
Robotics Club at the University of Central

Florida

i

Table of Contents

1. Introduction ...1

1.1. Executive Summary .. 1

1.2. Project Motivation and Goals ... 2

2. Objectives, Specifications, and Budget ..3

2.1. Project Requirements and Specifications .. 4

2.2. Budget ... 4

2.3. Timeline ... 5

2.3.1. January .. 5

2.3.2. February... 5

2.3.3. March ... 5

2.3.4. April... 6

3. Research ...7

3.1. Similar Proposals and Projects ... 7

3.1.1. 3DLS-Ks Continuous Rotation ... 8

3.1.2. Dynamixel Hokuyo Coupling .. 9

3.1.3. UnoLaser 30M135Y ... 9

3.2. Laser Sensors (LIDAR)... 10

3.2.1. Hokuyo PBS .. 10

3.2.2. Hokuyo URG-04LX-UG01 .. 11

3.2.3. Hokuyo UBG-04LX-F01 .. 12

3.2.4. Hokuyo URG-04LX .. 13

3.2.5. Hokuyo UTM-30LX... 13

3.2.6. Comparison of Lasers ... 14

3.3. 3D Scanning Implementations .. 15

3.3.1. Rolling Scan .. 15

3.3.2. Pitching Scan .. 16

3.3.3. Yawing Scan ... 17

3.3.4. Comparison of Scanning Implementations .. 18

3.3.5. Open Loop Control ... 19

3.3.6. Closed Loop Control .. 20

3.4. Motor Control .. 22

ii

3.4.1. Micro stepping... 22

3.4.2. SM-42BYG011-25 Stepper Motor ... 23

3.4.3. 42BYGHM809 Stepper Motor .. 23

3.4.4. A3967 Micro stepping Driver .. 24

3.4.5. STMicro's L6470 Stepper Motor Driver .. 24

3.4.6. Servo .. 24

3.4.7. Hitec HS-805BB Servo Motor... 25

3.4.8. Dynamixel MX-28T Robot Actuator ... 25

3.4.9. DC Motor Control ... 26

3.4.10. KM-12FN20-100-06120 DC Motor ... 26

3.4.11. GB37Y3530-12V-83R DC Motor .. 26

3.4.12. Encoders .. 27

3.4.13. E6A2-CS3E Rotary Encoder .. 27

3.4.14. A6B2-CWZ3E-1024 Rotary Encoder ... 27

3.4.15. Comparison of Motors ... 28

3.5. Microcontrollers / Computing ... 29

3.5.1. Raspberry Pi ... 30

3.5.2. Beagle Board Black ... 30

3.5.3. Panda Board ES ... 30

3.5.4. Comparison of Microcontrollers ... 31

3.6. Power... 33

3.6.1. Regulation ... 34

3.6.2. TI LMZ14203 Simple Switcher ... 34

3.6.3. TI LM7805CV Linear Voltage Regulator .. 35

3.6.4. CUIINC V78-2000 .. 36

3.7. Waterproof Connectors .. 37

3.7.1. Weipu Connectors .. 37

3.7.2. Bulgin Buccaneer Connectors .. 38

3.8. Data Representation Software .. 40

3.8.1. Depth Imaging... 41

3.8.2. OpenCV ... 42

3.8.3. SimpleCV ... 42

3.8.4. PDAL .. 43

4. Design ..44

iii

4.1. Hardware Design ... 44

4.1.1. Hokuyo UTM-30LX 2D Laser Range Finder .. 45

4.1.2. Timing... 46

4.1.3. Power Requirements ... 47

4.1.4. Raspberry Pi Model B .. 48

4.1.5. Dynamixel MX-28T Robot Actuator ... 50

4.1.6. Motion... 52

4.2. Software Design .. 53

4.2.1. Laser Communication .. 54

4.2.2. Dynamixel MX-28T Servo Communication .. 56

4.2.3. Webcam Communication .. 56

4.2.4. Platform Communication ... 57

4.2.5. 3D Creation ... 58

4.2.6. Point Cloud .. 59

4.2.7. Real World Image... 61

4.2.8. Dynamic Configuration .. 62

4.2.9. User Interfaces ... 63

4.2.10. Network Access .. 64

4.2.11. Output Protocol ... 65

4.2.12. Command Sequence ... 69

4.2.13. Output ... 71

4.2.14. Linux ... 72

4.2.15. Raspien OpenCV Package ... 73

4.2.16. Programming Languages .. 73

4.2.17. IDE .. 74

5. Executive Design Summary ...75

5.1. 2D Laser Specifications .. 75

5.2. Software Structures ... 76

5.3. Parts... 78

5.4. Program Functions .. 78

6. Construction, Testing, and Evaluation ..80

6.1. 2D Laser .. 80

6.2. Motor .. 81

6.3. Microcontroller .. 82

iv

6.3.1. Power and Regulation ... 82

6.3.2. Input and Output ... 82

6.4. Software Unit Testing .. 83

6.5. System Performance .. 84

6.5.1. Regular Environment ... 84

6.5.2. Outside Environment ... 89

6.5.3. Project Summary .. 90

7. Bibliography ..91

A. Copyright Permissions ..93

Table of Figures

Figure 1 Kinect Depth Image .. 2

Figure 2 3DLS Continuous Rotation 3D-Laser-Scanner .. 8

Figure 3 3D Rotating Design .. 9

Figure 4 Uno Engineering UnoLaser 30M135Y 3D LIDAR 10

Figure 5 Hokuyo PBS .. 11

Figure 6 Hokuyo URG-04LX-UG01 ... 12

Figure 7 Hokuyo UBG-04LX-F01 .. 12

Figure 8 Hokuyo URG-04LX .. 13

Figure 9 Hokuyo UTM-30LX ... 14

Figure 10 Rolling Scan Coverage .. 16

Figure 11 Pitching Scan Coverage .. 17

Figure 12 Yawing Scan Coverage (Side Mount) ... 18

Figure 13 Basic Open Loop Control Path .. 20

Figure 14 Basic Closed Loop Control Path .. 22

Figure 15 SM-42BYG011-25 Stepper Motor ... 23

Figure 16 Hitec HS-805BB Servo Motor... 25

Figure 17 M-12FN20-100-06120 DC Motor ... 26

Figure 18 E6A2-CS3E Rotary Encoder .. 27

Figure 19 Example Circuit Using LMZ14203 Switching Regulator 35

Figure 20 Example Circuit Using the TI LM7805CV ... 36

Figure 21 Weipu Connectors Mounted ... 38

Figure 22 Point Cloud Image .. 40

Figure 23 Hardware Block Diagram .. 44

Figure 24 Hokuyo UTM-30LX Scan Steps ... 45

Figure 25 LIDAR Sync Pulse .. 46

Figure 26 Pinout of the TXB0108 8-Channel Logic Level Converter 48

Figure 27 Laser Mount Outline .. 51

Figure 28 Pitching Scan Prototype .. 52

Figure 29 Rolling Scan Model .. 53

v

Figure 30 Software Block Diagram .. 54

Figure 31 Oscilloscope Output of Laser Synchronization Signal 55

Figure 32 Projecting 2D Image from Radial Scan .. 59

Figure 33 Point Cloud Representation .. 60

Figure 34 Range Image .. 61

Figure 35 Graphical User Interface Mockup .. 63

Figure 36 Hokuyo 2D Dimensions ... 75

Figure 37 Sequence Diagram for Normal Operations .. 77

Figure 38 Sequence Diagram for Setting Changes .. 77

Figure 39 Image Class Diagram .. 79

Figure 40 Communications Class Diagram ... 80

Figure 41 Camera Image of Clear Hallway .. 85

Figure 42 Point Cloud of Clear Hallway .. 86

Figure 43 Depth Colored Point Cloud ... 87

Figure 44 Range Image Comparison With Camera Image 88

Figure 45 Nighttime Scan Outside .. 89

Table of Tables

Table 1 Timeline ... 7

Table 2 Laser Sensor Comparison .. 14

Table 3 Comparison Chart of Motors .. 28

Table 4 Comparison Chart of Microcontrollers .. 33

Table 5 Expected Power Consumption by System Component 33

Table 6 Bulgin Buccaneer Connectors ... 40

Table 7 Raspberry Pi Model B Pin Out ... 49

Table 8 Packet Layout ... 66

Table 9 Original Laser Range FInder Protocol Codes ... 68

Table 10 Error Codes .. 69

Table 11 State Diagram for Command Protocol ... 70

Table 12 Hokuyo Cable Pin Out .. 76

Table 13 Parts List ... 78

1

1. Introduction

1.1. Executive Summary

Since its inception in 2002 the Robotics Club at UCF has pushed students and
volunteers to the cutting edge of technology and innovation. Through annual
participation in multiple international autonomous robotics competitions and
outreach programs the club has excelled in generating robotic platforms capable
of increasingly complex tasks. These competitions, primarily hosted by the
Association for Unmanned Vehicle Systems International (AUVSI), include a
variety of different kinds of platforms such as surface, ground, and underwater
based vehicles. While upon initial inspection it may seem that such platforms
operating in completely different environments would be vastly different, they are
instead very similar in accomplishing some of the basic tasks required for
autonomy. Since all of the platforms require interaction with their environment
being able to sense their surroundings accurately has proven difficult for the
organization to manage across multiple platforms without extreme cost. Of the
many sensors outfitted on the varying vehicles there is one which universally
provides an ample amount of real time data for the necessary autonomy. Light
Detection and Ranging (LIDAR) scanners are used on the largest of the
platforms fabricated in the club and are great for obstacle detection and
avoidance. While previous attempts at using the raw 2D data from these sensors
for map generation has proven beneficial observing a 3D world from 2D data is
never an ideal scenario. It is the goal of this design group of computer engineers
to enable 3 dimensional sensing from the physical rotation of a 2D laser scanner
for use on these platforms.

Power input into the rotating system will be different based on the available
power regulation requirements of the robotic platforms themselves. It is expected
that power into this system will potentially be cut off at any time from emergency
stop systems and therefore must be capable of compensating for power spikes
and total power loss. Such a system must also be able to accept a range of input
voltage levels and be able to compensate for inconsistencies via loss throughout
the system. With the intended end application of the sensor being an outdoor
environment protection of sensitive electronics and waterproofing of cables
routed to and from the vehicle and system is of utmost importance. Management
of cables is also crucial to the system as the sensor is being physically moved or
rotated increasing the probability of kinks or snags with either the vehicle or the
system itself. Different approaches can be taken to minimize this risk by
implementing different rotation schemes or to avoid it by going completely
wireless.

Fabrication of an embedded system for use in different robots assumes a variety
of available mounting solutions be made available. Dependent on the rotation

2

scheme chosen mounting of the sensor about the appropriate rotation axis
should improve accuracy of 3D measurements. Offloading sensor reading to an
external system enables more computational resources for the platform itself for
other demanding tasks such as computer vision. Simplified connectors and
software interfaces provide seamless integration with existing systems.
Communication between the robots and embedded laser system is therefore
crucial in guaranteeing interoperability. Abstracting a generalized interface for
commanding, packaging, and receiving scan data must be as much of a priority
as is the data itself. Leveraging the Joint Architecture for Unmanned Systems
(JAUS) architecture as a starting point will ensure that the existing capabilities of
the robots will mesh properly with the proposed laser scanner.

1.2. Project Motivation and Goals

With the increasing complexity of modern manufacturing and the birth of 3D
printing the demand for acquiring spatial data from an environment has never
been higher. Whether it is a desktop 3D printer or an autonomous car there have
been many breakthroughs in the past few years which have expanded the ability
of current light based detection and ranging sensors. These advancements come
at a price and that price is often in the tens of thousands of dollars. Lower cost
alternatives have been on the market for some time and have come in some
surprising forms but usually have tradeoffs. The Xbox Kinect for example is a
gaming camera device that can achieve many of these functions but fails to work
outside or at long distances due to its IR camera. Figure 1 demonstrates the
sensors capabilities indoors.

(Reprinted with permission through fair use policy)

Figure 1 Kinect Depth Image

The goal of this project was to create a three-dimensional sensor capable of
remaining low cost while still retaining all of the accuracy, precision, and speed of
higher cost solutions. While the final assembly has many useful functions, the
primary role is the utilization by the Robotics Club at UCF for their many
autonomous robotic platforms. Robotic platforms have a uniquely high

3

dependency on the speed and accuracies of such sensors in order to interact
within dynamic environments reliably.

Over the many years of intense competition with a variety of platforms across
multiple teams the Robotics Club at UCF has consistently found a need for
collecting highly accurate 3D data from the environment. The tasks expected of
the autonomous vehicles built are outlined in the various collegiate level robotics
competitions sponsored by AUVSI including mainly the IGVC, Roboboat, and
Robosub competitions. While initially these competitions may appear to be as
different as the diverse platforms designed for them, in fact, they share almost all
of the same underlying proficiencies. The vehicles competing in these
competitions must all be able to interact with and react to changes in their
environment in a real-time application. Building a system with such a capability
normally requires construction of a modest map which innately relies on the
precision of the sensors used in its generation. Approaches by previous robotics
teams generally attempt to leverage simple 2D data for primitive obstacle
avoidance techniques which have proven mildly effective. To completely and
reliably map a real-world environment however one must consider all dimensions
at once to fully construct a true representation. Attempts have been made by the
organization to construct such data, but fragmentation in development and the
loss of computational power by such systems has deterred further development.
The club has identified this need in recent years and have tasked this group with
coming up with a solution to this problem. The club has generously offered to
donate a fast, long range 2D laser range finder to help in the construction of the
proposed system.

2. Objectives, Specifications, and Budget

Functionally speaking the project is a fully embedded 3D solution leveraging a
very capable 2D laser scanner. In order to generate 3D data the sensor is placed
upon a fabricated mount which physically moves the sensor about an axis of
rotation. The mechanical device does not restrict the wide field of view of the
sensor itself and in addition should minimize translational errors due to physical
sensor movement during scans. Many software features were planned including
accurate depth mapping and live perspective transforming to real time camera
feeds. This data is sent out via a network connection in the system. This
standard allows for streaming of image data generated from each full scan real-
time to multiple platforms if desired across a network. It also enables an ‘always
on’ operation of the sensor further emphasizing the systems embedded nature.

4

2.1. Project Requirements and Specifications

The Robotics Club at UCF generated a formal list of requirements that the project
should have adhered to. These technical requirements given by the organization
and other more generic specifications are listed below by category:

Physical
 Occupy less than 3 cubic feet.
 Mounting options on 2 axes.
 Weigh less than 5 pounds.

Scans

 Scanning time will be 1.5 sec / scan or better for 45° scans.
 The assembly will be capable of at least 160° horizontal F.O.V.
 The assembly will be capable of at least 90° vertical F.O.V.
 Angular resolution on all axes will be at least 0.5° or better.
 Ranges from 0.1 to 30 meters.
 Real time configuration of these parameters.

Power

 Will run on a single power rail (12/24 V).
 Maximum power consumption will not exceed 36 W.
 Onboard regulation for all components.
 Onboard voltage monitoring

Interfaces

 PC connection (Ethernet / USB)
 Power connection
 Connectors must be waterproof

Software

 SAE JAUS compliance.
 ‘Always On’ operation of the system.
 Drivers, visualization, and monitoring software will be cross-platform.
 All software will be open-sourced and well documented.

Operating Conditions

 Performance will be identical both in indoor / outdoor environments.
 Operating temperatures will be from at least 0 to +50° C.
 System must be weatherproof, IP Standard 45 or better.

2.2. Budget

This project is funded generously by the Robotics Club at UCF from their in-
house funds and through the various sponsors of the organization. The 2D laser
provided is the most expensive component of the project and was being loaned

5

for the groups use. The group estimates total cost of the project to be around
$7,000 .00 total. Table 1 outlines the projected costs of various components of
the project and exactly what has and has not been acquired.

2.3. Timeline

2.3.1. January

We began the creation of the 3D laser range finder by preparing our
environment. We built and installed the operating system for the raspberry Pi.
Once we have installed the operating system began creating our basic hardware
access functions. We created small callable functions that each can access the
GPIO pins and provide methods to listen or provide output. We installed and
configured the library for the Hokuyo laser scanner and created functions that are
able to access and utilize it.

The rotation of the laser scanner was the next part we will needed to create. This
included 3D modeling of the part, printing the part on a 3D printer and mounting it
to our motor. This provided us with a prototype while we create the software.

2.3.2. February

We created the necessary functions that will utilize the Point Cloud Library. This
required us to modify the code in order to run it on our processor. Then we built
the libraries and installed them into our system. Once we had the libraries
installed, we will need to create our more advanced methods that combine some
of our functions. At this point we hoped to be able to take test data and pass it
through our system and provide some sort of resemblance to our output data.
However, we were unable to do so at this point.

Once the basic functions have been created, we began the creation of the output
API. This will require the creation of many functions for communication. We
hoped to create listeners that will wait for requests, create input and output
buffers, and create encoding and decoding classes that will be used. The
different actions will basically be “scripted” mechanisms that will respond to the
different action codes. This should have all adhered to our new communication
protocol.

The parts we ordered had come in at this point and we built prototype circuits for
testing. We tested our system so that each of the components will function
correctly.

2.3.3. March

We now focused on the software generation and output. The software that we
needed to create will combine all of the different functions and act as our central
control system. We hoped be able to have all the software completed by this

6

time, however it was not. Once all systems were verified to be working, we
ordered the PCB’s made for our power regulation. We also started the final
construction of the system and prepare it for actual deployment.

2.3.4. April

We completed the final hardware assembly with our PCBs and mount all
necessary hardware. This will be the finished product, however, for the next
month, we tested, corrected, tested, adjusted, tested, modified, tested, verified,
tested, and finally tested. We made sure everything is working to our required
specifications and as time permitted, we were able to add some additional
mechanisms that will assist in demonstrating this project.

Title Begin
Date

End Date Sep
'13

Oct
'13

Nov
'13

Dec
'13

Jan
'14

Feb
'14

Mar
'14

Apr
'14

Project Document

9/12/2013

9/17/2013

x

Research

x

x

Laser Sampling Controls 9/17/2013 9/24/2013
x

Laser Interfacing (MCU) 9/17/2013 9/24/2013
x

Mechanical Control
System

9/17/2013 9/24/2013
x

PC Interfacing 9/17/2013 9/24/2013
x

Debugging Interface 9/25/2013 10/15/2013

x

Software Library Research 9/25/2013 10/15/2013

x

Repository Setup 9/25/2013 10/15/2013

x

Camera Perspective
Transformation

9/25/2013 10/15/2013

x

7

Begin Date End Date Sep

'13
Oct
'13

Nov
'13

Dec
'13

Jan
'14

Feb
'14

Mar
'14

Apr
'14

Design

10/16/2013

12/31/2013

Tilting Mount
10/16/2013

10/31/2013

X

PCB Design
12/1/2013

12/31/2013

X

Driver Software
10/16/2013

12/31/2013

X

X

X

PC Software
10/16/2013

11/30/2013

X

X

Electrical Components
10/16/2013

12/31/2013

X

X

X

Build
12/15/2013 4/30/2014

PCB Board

2/1/2014

3/31/2014

X

X

PC Driver Board
12/15/2013

1/15/2014

X

X

PC Software
1/1/2014

2/28/2014

X

X

Laser Scanner
12/15/2013

1/31/2014

X

X

Testing

Continuously

12/15/2014

4/30/2014

X

X

X

X

X

Table 1 Timeline

3. Research

3.1. Similar Proposals and Projects

There have been many attempts at utilizing the Hokuyo UTM-30LX LIDAR as a
low cost full 3D laser scanner. This section will highlight systems implementing
3D laser designs and present different methods of adding an extra dimension to
the normal 2D data. Many of the technologies presented are available as
commercial products wherein teams of professional engineers have carefully and
meticulously sought after efficient solutions. It was the goal of this project to

8

accumulate the best approaches, techniques, and ideas of those available in
order to provide the best solution in the end design.

3.1.1. 3DLS-Ks Continuous Rotation

One of the first implementations uncovered by the group is the Fraunhofer built
3DLS-Ks continuous rotation sensor. This is a fully embedded 3D laser scanner
leveraging the same Hokuyo UTM-30LX sensor and comes packaged with a
software suite and API for implementation. This product is sold commercially as a
standalone 3D sensor for various automated applications. The 3DLS-Ks
implements a method of mounting the 2D sensor on its side and placing it on a
continuously rotating platform in order to generate full 3D scans. This method
was also observed to offer the advantage of allowing the mounting point of the
rotational axis to be the same as the scanning axis.

Figure 2 3DLS Continuous Rotation 3D-Laser-Scanner

This technique effectively minimizes overall error in the 3D reconstruction from
the 2D scans as the scans are all referencing the same axis of revolution. The
group identified this as an effective design goal and specifically sought after other
designs which implemented this same approach. This product is highlighted by
many weather-proof connectivity options on the rear of the device and is an
entirely weather resistant design. This is a trait highly favorable to the group’s
proposed design and will be a good reference on how to achieve proper sealing
of the final system for outdoor use.

9

3.1.2. Dynamixel Hokuyo Coupling

Many advantages of this open-source design were observed in that the structure
is based on a simple premise of rotating the laser in a manner that keeps the
focal point of the scans in line with the point of rotation much like the Fraunhofer
design. The entire assembly was also 3D printed which enables lower costs in
system production. While rotating the 2D scanner in clockwise and anticlockwise
motions a full 3D scan can be generated in a timely manner. The heart of the
design is based on the use of a serial interfacing servo motor. Such a design
would make motor interfacing and control much simpler than other types of
motors and would also enable motor feedback to the system in use.

Figure 3 3D Rotating Design

 (Reprinted with permission through fair use policy)

3.1.3. UnoLaser 30M135Y

The Uno Engineering laser is of a pitching implementation whereby the laser
sensor is mounted on a platform that rotates the sensor up and down sweeping a
plane directly in front of the assembly. The overall design of this system is
relatively more complicated in that to attempt to set the axis of rotation to that of
the receiving point of the laser without obstructing the overall 2D view adds some
complexity. The company’s design uses a C shaped channel affixed to a carriage
system at a fixed distance from the sensor to allow for the appropriate tilting
reference point. The advantage of the tilting approach was immediately obvious
to the group as the range of immediate coverage is immensely beneficial to the
intended application.

10

Figure 4 Uno Engineering UnoLaser 30M135Y 3D LIDAR

 (Reprinted with permission through fair use policy)

3.2. Laser Sensors (LIDAR)

LIDAR (Light Detection and Ranging) is a technology which measures
distances remotely by illuminating an object with a laser and analyzing the
reflected light received back. The basis for all specifications and requirements of
the project rely heavily on the technology and capabilities of the LIDAR sensor
used and thus choosing the correct 2D sensor is crucial for the accuracies
necessary. The group considered many performance metrics in choosing a
LIDAR but the main characteristics scrutinized were: physical dimensions,
scanning performance, power usage, and device interfacing. The following
section outlines LIDARs considered and their specifications.

3.2.1. Hokuyo PBS

The Hokuyo PBS is a small LIDAR, at a size of 60mm x 75mm x 70mm, that
features 4 mounting holes on its base and indicator LED’s on its face. The device
weighs in at 500g. The device has a scan angle of 180 degrees, scans at a rate
of 1 revolution per 100 milliseconds and a scan distance of 10m. It uses an infra-
red LED as light source. Angular resolution was not provided by the
manufacturer. Scan parameters may be adjusted by RS-232 connection. It has
been noted that the device may malfunction when receiving strong light or
sunlight. The device uses a 24V DC source with maximum power usage of 12W.
A single cable is used for both power and data, with no external switches. All
data is transferred using a serial connection. The Hokuyo PBS has a small
physical footprint and a low amount of power consumption. Unfortunately, the low
maximum scan distance, lack of external control, usability outside and lack of
modern data connection make it less than ideal for our usage.

11

(Permission Pending)

Figure 5 Hokuyo PBS

(Used with permission)

3.2.2. Hokuyo URG-04LX-UG01

The Hokuyo URG-04LX-UG01is a small LIDAR at a size of 50mm x 50mm x
70mm, with 4 mounting holes on its base and weighs in at a mere 160g. The
device has a wide scan angle at 240 degrees, a max distance of 5.6m and is
able to scan every 100ms with an angular resolution of ~0.36 degrees. It uses a
Semiconductor laser diode as light source. Scan settings can be changed using
the USB Mini connection located at the back of the device. It is noted that the
device is designed only for indoor applications. The device uses 5V DC drawn
from the USB connection and has a maximum power usage of 2.5W. Data is
handled through the USB connection using the SCIP 2.0 protocol. The Hokuyo
URG-04LX-UG01 has a small physical footprint, minimal power consumption,
and uses the SCIP protocol we will use for our design. However, due to the long
scan time, low scan distance, and lack of outdoor usage, it is not within our
design specifications.

12

Figure 6 Hokuyo URG-04LX-UG01

(Used with permission)

3.2.3. Hokuyo UBG-04LX-F01

The Hokuyo UBG-04LX-F01 has a physical size of 60mm x 75mm x 70mm, with
four mounting holes on its base and a weight of 260g. It has a scan angle of 240
degrees, a maximum scan range of 5.6m with a scan time of 28ms and angular
resolution of ~0.36 deg. It uses a Class 1 Semiconductor laser diode as a light
source. Scan settings are adjustable through either an RS-232 serial connection
or the onboard USB. This device is designed for indoor application. It uses a 12V
DC connection for power and has a maximum power consumption of 4.5W. Data
and power are handled through the connected USB cable, with data transferred
using the SCIP 2.0 command system. The Hokuyo UBG-04LX-F01 has medium
power consumption, great scan time, scan distance and angular resolution.
However, the device is unable to function in direct sunlight and cannot reach our
required scan distance.

Figure 7 Hokuyo UBG-04LX-F01

(Used with permission)

13

3.2.4. Hokuyo URG-04LX

The Hokuyo URG-04LX has a physical size of 50mm x 50mm x 70mm, a weight
of 160g and four mounting points on the bottom. It has a scan angle of 240
degrees, a maximum scan range of 4m with a scan time of 100ms and an
angular resolution of 0.36 degrees. It uses a class 1 Semiconductor laser diode
as a light source. Scan settings are adjustable through the onboard USB or RS-
232 connection. The device is designed for indoor usage. It uses a 5V DC
connection and has a maximum power consumption of 2.5W. Data is transferred
through the USB via SCIP V1.1 / 2.0 or an NPN open collector. The Hokuyo
URG-04LX has low power consumption with good scan angle and resolution.
However, the maximum scan distance and scan time are not up to what is
necessary to complete the project.

Figure 8 Hokuyo URG-04LX

(Used with permission)

3.2.5. Hokuyo UTM-30LX

The Hokuyo UTM-30LX has a physical size of 60mm x 60mm x 85mm, a weight
of 210g and four mounting points on the bottom. It has a scan angle of 270°, a
maximum scan range of 60m with a scan time of 25ms and an angular resolution
of 0.25°. It uses a class 1 Semiconductor laser diode as a light source with a
wave length λ=870nm. Scan settings are adjustable through the USB connection.
The device is designed for indoor/outdoor usage with an IP rating of IP64. It uses
a 12V DC connection and has a maximum power consumption of 12W. Data is
transferred through the USB via SCIP V1.1 / 2.0 or an NPN open collector. The
Hokuyo UTM-30LX has low power consumption with good scan angle, resolution,
and range.

14

Figure 9 Hokuyo UTM-30LX

(Used with permission)

3.2.6. Comparison of Lasers

Each of the sensors listed in section 3.2 have many different pros and cons. The
table below highlights each sensor and the key metrics used by the group in
selection for the system.

Sensors Hokuyo
PBS

Hokuyo
URG-
04LX-
UG01

Hokuyo
UBG-
04LX-F01

Hokuyo
URG-04LX

Hokuyo UTM-
30LX

Light
Source

IR LED
(λ=880nm)

Laser
Diode
(λ=785nm)

Laser
Diode
(λ=785nm)

Laser
Diode
(λ=785nm)

Laser Diode
(λ=905nm)

Application Indoor Indoor Indoor Indoor Indoor/Outdoor

Accuracy N/A ±30mm ±10mm ±10mm ±50mm

Angular
Resolution

1.8° 0.36° 0.36° 0.36° 0.25°

Scanning
Range

178.2° 240° 240° 240° 270°

Detecting
Range

0.2m to 3m 60mm to
1000mm

20mm to
5600mm

60mm to
4095mm

0.1m to 30m

Scan Time 100ms/scan 100ms/scan 28ms/scan 100ms/scan 25ms/scan

Power 24v DC 5V DC
(USB)

12v DC 5V DC
(USB)

12v DC

Weight 500g 160g 260g 160g 370g

IEC Rating IP64 IP64 IP40 IP64 IP64

Table 2 Laser Sensor Comparison

15

Reviewing the specifications of the different offerings from the Japanese based
company Hokuyo revels few laser sensors within spatial and weight restrictions
for the system as outlined in 2.1. At 500 grams the Hokuyo PBS shows the most
bulk out of all sensors found. The detection range and angular resolution is
decent but the limitation of the sensor to indoor applications would not work in a
system required to operate outside. The other four sensors all occupy about the
same space but vary widely in detection ranges. With longer ranges being
preferred the group was able to eliminate the Hokuyo URG-04LX-UG01 and
URG-04LX as candidates since neither can go 5 meters out. From the remaining
two sensors the group decided to stay with the Hokuyo UTM-30LX as it has
superior range, resolution, and most importantly is the only sensor that works in
outdoor settings with minimal degradation in accuracy. This sensor is also being
donated by the club for use and thus eliminates a lot of extra material costs
needed to ascertain a different laser scanner.

3.3. 3D Scanning Implementations

Having chosen a 2D laser scanner research into different approaches to adding
in a third spatial dimension to the data began. The Hokuyo UTM-30LX scanner
needed to be revolved about some axis to obtain required output. Careful
research into the three different possible configurations will enable superior
results for real-time use. With the goal of implementing this axis of rotation at the
point of measurement of the scanner, individual analysis of each technique will
prove beneficial in examining potential design difficulties. Exploration of each
arrangement will reveal not only impending downfalls but also advantages to
each technique for the intended robotics application. Optimization of the data will
be crucial for image generation as frame rate will be critical in a moving platform.
The available scanning methods are referenced by the naming scheme of rolling,
pitching, and yawing scans. These methods are in reference to the lasers
coordinate frame with the convention of positive x being forward out in front of
the sensor, positive y being to the right of the sensor and positive z being down
below the sensor.

3.3.1. Rolling Scan

The rolling scan implements a horizontal sweep and rotates the sensor around a
vertical axis (x axis) coincident to the center of the sensor. By rotating the sensor
in this method there is a single focus point in the front of the sensor. The density
of measurement data collected by the sensor in this configuration is directly in
front of the sensor. However the majority of the initial scan coverage is offset
from the center of the device to either side towards the ‘peripherals’. Full forward
coverage is only possible via full 180 degree rotations. A system which
implements the rolling scan methodology while retaining a revolution about the
origin of scans is relatively straight forward. Since the mounting point of motion
can be placed behind the sensor without obstruction of the raw scanning data.
With the mounting system so close to the majority of the weight in the assembly

16

lower torque motors become more viable and can therefore lower overall system
costs. The laser scanner chosen does not have a full 360 view and thus the small
window behind the sensor provides enough space for mounting motors and
electronics without hindering data capture.

Figure 10 Rolling Scan Coverage

3.3.2. Pitching Scan

Pitching scans implement a horizontal sweep like the rolling scan but pitches the
sensor around a horizontal axis coincident to the center of the sensor. Here the
highest density of points is focused on the extremes of the left and right side.
Coverage directly in front of the device is sparser but more uniform. The pitching
technique does not require full rotations for immediate frontal coverage as it was
in the rolling scan. Implementation of this technique will prove more difficult given
the limited number of mounting solutions on the sensor itself. Material costs for
the mounting system will also be higher than that of the rolling scan as extra
brackets and gears will be needed to rotate the sensor at a further distance.
Considering the physical design requirement of two axis mounting availability it is
difficult to provide ample mounting without sacrificing space and weight. Rotation
about the middle of the sensor with this implementation would require a larger
assembly than the rolling technique but has a more desirable immediate
coverage area. Demands on torque for the motor used are much greater here
also since the motor would need to be placed either above or below the laser to
generate appropriate rotations. The motor would be mounted and therefore need
to move the assembly at a greater distance away than in the rolling method
where it could simply be placed directly behind the sensor. The pitching
assembly is therefore the best option for fast operation and immediate coverage
but incurs the greatest materials cost and design complexity.

17

Figure 11 Pitching Scan Coverage

3.3.3. Yawing Scan

The yawing scan utilizes a vertical sweep and implements a vertical axis of
rotation central to the center of the sensor. There are two possible orientations
of the sensor for coverage in this configuration with the laser either on its side or
on its back. A sideways orientation is seen as more favorable for robotics as it
can give the greatest immediate view to the platform. In applications requiring
more than 180 degrees field of view this method would be the only viable option.
To accomplish greater than 180 degree scans additional hardware would be
required to manage a cables on a continuous rotating platform. Motor selection
would also be limited to those capable of achieving this continuous state.
Measurement densities of the yawing scan are heavily focused towards the top
and bottom with greater uniformity around the circumference of the scan.
Operation of the yawing scan closely resembles that of the pitching scan except
that the rotation controls the horizontal field of view rather than the vertical.
Construction of a rotating assembly for this technique has a difficulty between
that of the pitching and rolling schemes with a cost reflecting that. With the
sensor on its side or back the rotating apparatus can be built without significantly
occluding the laser because of the window on the back of the sensor. Without the
need for additional hardware, mounting flexibility of such a device would be more
dynamic than in the pitching scheme. Numerous potential applications of this
sensor make selection of the horizontal rather than the vertical field of view
favorable because resolution is more easily relinquished for faster 3D imaging.

18

Figure 12 Yawing Scan Coverage (Side Mount)

3.3.4. Comparison of Scanning Implementations

Addition of an extra dimension to the 2D system is possible by rotating the laser
in three different ways (axes). The rolling employment simplifies overall
construction as mounting at the axis of measurement can be done without
obstruction to the sensor. Placing the mounting point of the driving assembly
behind the sensor will accomplish both goals while also making the overall
design smaller and lighter. A rolling system however would require full 180
degree rotations in order to fully cover the area directly in front of the assembly.
Due to the importance of obstacle avoidance, and therefore immediate range
data, this method is seen as less favorable to implement. Yawing scans fix some
of the measurement density inconsistencies of the rolling scan by placing the
sensor on its side or back while still allowing for a centered rotational axis. It is
normally very difficult to place the sensor on its side to rotate it 360 degrees.
Obstructions from the cables on the sensor itself could cause snags and other
difficulties. Certain design choices could help to eliminate this problem by limiting
the range of the moving assembly so as to avoid this issue. Since the
requirements specify a minimum of 160 degree horizontal field of view, a smaller
rotational range would no longer interfere physically with the sensor. Pitching the
2D laser generates a measurement density similar to that of the yawing
technique offering uniformity and full frontal coverage. This technique proves
difficult however at implementing rotation at the point of measurement without
obstruction. Given the point of rotation would physically be above the sensor
itself unneeded brackets and gears would need to be designed in order to
accomplish this goal.

19

3.3.5. Open Loop Control

In an open loop control system, only the current state and input are taken into
account when driving the system. This control system is typically used in simple
processes, as there is no feedback to see if the output matches the intended
goal. In the following section, we discuss the viability of an Open Loop Control
system for this project by taking into account each subsystem and the
information it receives and transmits.
As the most critical part of the project, the LIDAR unit must be considered first. In
terms of input and output, the LIDAR units we have researched are almost
identical and will therefore be discussed as a whole instead of individually. The
main purpose of a LIDAR unit is to sweep an area with a laser, find a distance
and transmit to whatever is listening. This is done without any response from the
listening device. Each 360 degree rotation of the LIDAR takes a specific amount
of time, making it possible for LIDAR and motor to work in tandem without the
need for a sync pulse. While the LIDAR can be configured to only scan certain
areas by changing the scan start angle and scan end angle, these settings are
not modified while the system is in use. Given that any input to the LIDAR is set
prior to actively using the device, it is entirely possible for a LIDAR unit to exist in
an open loop control system as it needs no feedback.
Next, we examine the unit that turns the 2D planes acquired by the LIDAR into a
full 3D image, the motor. As there are several categories of motor we consider
for this project; Stepper motors, Servo motors and DC motors with encoders; we
will discuss them by their categories instead of motors as a whole.
The stepper motor is capable of taking an dividing circular rotation into a
specified number of steps, thus able to rotate at a constant distance per step.
This is done with a number of electromagnets on the outer rim of the motor. To
drive this motor, each electromagnet is given power in sequence to cause
motion. As such, this fits well with the concept of an open loop control system as
the motor is able to create a desired output given only its current state and
correct input. A stepper motor can be programmed to repeatedly move from a
start angle to an end angle at a predetermined rate, allowing for more than
enough time for a LIDAR sweep at each step.
A servo motor is a good example of the type of motor that is not usable in an
open loop control system. Servo motors operate using feedback to correct
performance, constantly monitoring mechanical position. This type of motor is
perfect for a closed loop control system, and it is discussed length in the
following section.
DC motors operate by electrically charging a rotating armature inside of a
magnetic field, thus controlling the speed of the rotations by the current supplied
to the armature. A DC motor is a strong choice for projects requiring a large
amount of torque or speed, as they can be started at high power by supplying a
large amount of impedance with the DC voltage. As DC motors move at a rate
relative to the impedance, an encoder must be added for there to be any
capability for specific motion. An encoder converts the position of a motors shaft

20

into code, allowing for feedback. Since a DC motor cannot move precisely
without feedback, it is not usable in an open loop control system.
In order for there to be any interaction between a LIDAR unit and motor, we must
use a microcontroller to receive and interpret LIDAR data as well as to drive our
motor system. With a stepper motor mounted correctly to a LIDAR unit, this is
entirely possible in an open loop control system as neither the stepper motor nor
the LIDAR unit require any feedback. The final piece of this system is the
external display, which takes the interpreted data from the microcontroller and
converts it into an image understandable to the human eye. The display system
requires no feedback as it uses a unidirectional data flow. The basic block
diagram below illustrates a possible open control loop system for this project.
The LIDAR unit and stepper motor are connected to work in sync, but are each
part of a different control path.

Figure 13 Basic Open Loop Control Path

3.3.6. Closed Loop Control

In contrast to open loop control, closed loop control takes current state, input and
feedback into account to calculate the correct output. As such, we must discuss
the way our LIDAR, motors and microcontroller, will fit into this control system.
We discuss LIDAR units in general in terms of control, as our chosen devices are
highly similar in their input and output. LIDAR is a great tool for a closed loop
control system as not only does each 360 degree sweep take the same amount
of time, but there is a 1ms pulse sent at the moment each sweep is completed.
This sync pulse can be used to easily drive a motor for once a sweep is
completed, the LIDAR needs to be rotated to scan a different angle. This is a

21

very important fact, as this pulse can be used to drive multiple events in different
systems. LIDAR units do not take in any feedback, however.

The stepper motor is the perfect motor for an open control system as it provides
a guaranteed motion given power to its electromagnets in the correct sequence.
While this is a strong trait in any motor, in a closed loop control system feedback
is necessary. It is possible to add an encoder to the stepper to measure the shaft
location and ensure perfect angular rotation to allow for feedback, but this is
overkill. While a stepper motor allows for perfect scan data storage as each step
is the same distance, without proper feedback it is not a viable option in a closed
loop control system.

The servo motor typically operates by taking feedback on either the position or
speed of the motor using an encoder. This is perfect for a closed loops system,
as it allows us to continually have information on the location of motor, and the
location of the LIDAR unit mounted to it. The servo motor is used in the basic
closed loop control system detailed at the end of this section.

A DC motor operates using a rotating armature inside of a magnetic field, where
the speed of the motor can be controlled by the amperage provided to the
armature. As such, there is no inherent control over the motors location. To fix
this problem, an encoder is typically added to send feedback on the position of
the motor shaft. A DC motor is a viable choice within a closed loop control
system, although the method in which it rotates is less than opportune for the
type of motion we will require for LIDAR operation.

As in the open loop control system, the microcontroller is the core unit of this
project. It is impossible to use the other subsystems without a controller, as the
controller drives the motors, while taking in and interpreting LIDAR data before
sending it to the external display system. LIDAR position feedback is provided
through either a servo or DC motor with encoder, allowing for the LIDAR scan
data to be stored with respect to current motor location.

The external display system typically reads computed LIDAR data from the
microcontroller and interprets it in a way that allows the human eye to understand
the distances it has recorded. Usually the microcontroller and display system
each interpret data independently, once the microcontroller has finished its
computations they are sent to the display for it to begin translating distance into
color. Since the display is doing calculations of its own, it is possible for errors to
arise or for data to be missing. As such the display can request feedback from
the microcontroller for a scan still in memory.

A basic block diagram for the LIDAR system is shown below in figure 14. It
shows the flow of data to and from the microcontroller, as well as the feedback
for each subsystem. Note the LIDAR unit does not receive feedback, but instead
transmits data as well as a sync pulse for timing.

22

Figure 14 Basic Closed Loop Control Path

3.4. Motor Control

The following section outlines the three different motor control options we have
taken into consideration for this project as well as a section on encoders, a
necessary part if a closed loop system is desired. The basic operation method of
each motor type is explained in detail before the individual motors specifications
are discussed. A table is provided at the end of each motor control option for
quick reference.

3.4.1. Micro stepping

There are a few options for creating the motion needed for our tilting platform.
One of the options is to use a stepper motor. Using a micro stepping driver, we
could be able to control our stepper motor that tilts our laser. The stepper driver
is used to accurately rotate the stepper motor in order to have precise
movements. Since we rely on our angular measurement for reproduction of the
3D image, we will need to insure that the angles are accurate.
Stepper motors work by providing a magnetic fields on different poles inside the
motor. The rotation is done by alternating the power put through each of the
poles and creating a rotational motion. Utilizing this design, the different poles
can be accurately controlled so that the shaft of the motor only turns a single,

23

constant, distance. This allows stepper motors to be controlled to turn degree by
degree.
The cost of the stepper is attractive due to its lower cost. One downside,
however, to using the stepping controller is that the stepper and driver do not
provide feedback to our system.

Figure 15 SM-42BYG011-25 Stepper Motor

(Reprinted with permission from Creative Commons License)

3.4.2. SM-42BYG011-25 Stepper Motor

The SM-42BYG011-25 stepper motor can provide a decent accuracy for our
project. This motor works on 12V at a rated current of 0.33A. This bipolar motor
can be driven by micro stepping driver to allow for accurate controls. The
minimum rotational angle for this motor is 1.8 degrees. Although it is not a single
degree or less rotation, we do not need to have a very small degree of rotation
for a high speed scanning. If we were to use this for even higher resolution
scanning however this proved to not be suitable.

3.4.3. 42BYGHM809 Stepper Motor

The 42BYGHM809 stepper motor can provide a very good accuracy. This motor
works on 3V at a rated current of 1.7A. This would require us to step down the
voltage to utilize this motor. This bipolar motor can be driven by micro stepping
driver to allow for accurate controls. The minimum rotational angle for this motor
is 0.9 degrees. This sub 1 degree rotational control would allow for much higher
resolution scanning. Even though this may not be utilized for higher operation,
this would make our project more expandable than its original design and could
be used for other applications such as motion detection, long range vision, or
SLAM.

24

3.4.4. A3967 Micro stepping Driver

The A3967 micro stepping driver is controlled using a high pin for stepping and a
high pin for direction. It will run off of our 12V power rail in order to power. It can
also operate up to 750mA. The motor hooks up to the driver using 4 wires, A & B
in and A & B out. These correspond with the 2 phases in the stepper motor and
control the stepper motor motion. We would be developing the software that
controls the stepping of the motor in this case. This driver works on the rising
edge of a controlled clock that corresponds directly with the motor control. It does
not utilize a serial system for control or feedback. Therefore, we would need to
manage the step counting within our program.

3.4.5. STMicro's L6470 Stepper Motor Driver

The STMicro's L6470 stepper motor driver is more robust driver than the A3967.
The L6470 can operate in the range of 8-45V, which includes our 12V rail and
can operate up to 3A. This would provide the ability to have a much larger power
motor. Communicating to the stepper controller is done using an SPI link. This
serial link is more stable and allows for full duplex operating. This means that we
can send it commands to move as well as get feedback returned to us about its
operating modes, speed, and location. It manages this information using
registers onboard the driver. Utilizing this driver may prove beneficial for us for
stability; however, we will also have to take into account the additional points of
failure that could occur. Because this driver uses the SPI interface, we would
need to have a specialized clock signal for communication. This takes away from
our existing number of pins and may require us to utilize additional shift registers.
This could lead to delays and possible failures.

3.4.6. Servo

The other option is to use a servo. The servo moves differently than the stepper
as it is a more fluid movement and it will rotate until it has reached its position.
This can lead to slipping and inaccurate results. However, servos will provide
location feedback by using an encoder in order to provide the exactly location
down to the degree. This allow for an extremely accurate results since the
movement is not geared and depends on the encoder resolution used. Most
servos, however, do not allow for full rotation and can only alternate direction
within a limited range. This is fine for our application since we will be unable to
rotate a full 360 degrees.

25

Figure 16 Hitec HS-805BB Servo Motor

(Reprinted with permission from Creative Commons License)

3.4.7. Hitec HS-805BB Servo Motor

The Hitec HS-805BB servo motor provides 180 degrees of rotation. This servo
motor works on 6V, so the voltage will have to be stepped down from our 12V
rail. The maximum operating current of the servo is 800mA. This servo can
provide 343 Oz-in of maximum torque, so moving the laser mechanism would not
be an issue.

3.4.8. Dynamixel MX-28T Robot Actuator

The Dynamixel MX-28T Robot Actuator is another such servo that can provide
an accurate movement. It requires serial communication to send it position data
and also to receive position data back from the servo. It uses a potentiometer in
order to provide the encoded position information. This servo provides a
resolution of 0.088 degrees. This level of accuracy would allow for our application
as well as the numerous others for high resolution 3D scanning. This servo also
has 360 degrees of rotation to allow for a full field of vision. This servo has a built
in driver that allows for the serial communication. It monitors the position, the
load, the input voltage, and the temperature. The communication speed can be
adjusted between 7343 bps to approximately 3Mbps. After testing we found that
we were able to utilize the highest speed for communication with little error. This
servo works on 12V and has a maximum operating current of 2400mA. Using this
amount of power would require us to make some sort of protection circuit that is
more robust than other motors may have required, but was worth it since this
gave the most options.

26

3.4.9. DC Motor Control

DC motors allow you to provide an amount of regulated power to move a specific
distance. This is done by rotating a charged armature in a magnetic field, where
the speed is dependent on the amount of current provided. These types of
motors are extremely cheap, but they are not accurate. The DC would prove
viable if an encoder and/or limit switches are used.

Figure 17 M-12FN20-100-06120 DC Motor

(Reprinted with permission from Creative Commons License)

3.4.10. KM-12FN20-100-06120 DC Motor

The KM-12FN20 DC motor could provide us the movement of the laser at a lower
cost. The motor runs on 6V and would have to be stepped down in order to
operate on our 12V rail. The maximum operating current of this DC motor is
135mA. The DC motor could be used if we deploy the use of a few different
components. An optical, rotary, or potentiometer encoder could provide the
rotational information of the DC motor shaft. With this information, we could then
adjust the voltage to alter the speed and location of the motor. Also, utilizing limit
switches would prevent operation out of bounds of our system. This method may
require more work on our part, but would reduce the overall cost.

3.4.11. GB37Y3530-12V-83R DC Motor

The GB37Y3530 DC motor has a built in rotary encoder. This is a 12V DC motor
and can provide location feedback. The rotary encoder provides 64 counts per
revolution on the shaft of the motor. this would provide a degree unit of 5.6
degrees. This would not be incredibly detailed, but could run the real team
mechanism of the 3D laser scanner. The minimum voltage for this motor can go
as low as 1V and as high as 12V and the maximum operating current would be at
0.4A. This is not a high powered motor and after testing may prove that a
gearbox may be necessary in order to provide ample amount of force.

27

3.4.12. Encoders

Encoders provide feedback of a motor to a circuit. Encoders are used to monitor
the motion of the motor’s shaft and provide a method that reports feedback of
that motion. We will need to discuss which of the encoders we will use if we
decide to use a DC motor in our application. Even though servos come with
motor feedback, there may be a need for a redundant system to measure and
test the given motor feedback.

Figure 18 E6A2-CS3E Rotary Encoder

(Reprinted with permission from Creative Commons License)

3.4.13. E6A2-CS3E Rotary Encoder

This rotary encoder allows us to attach it to any motor and provide motor
feedback. This type of rotary encoder uses a potentiometer to measure motion. It
works on between 5V and 12V, so it would be able to use our main 12V rail. The
maximum revolution per minute is 5000rpm. The feedback is provided by voltage
levels. This would require us to write the code in our main application, or to
create a separate board just for handing the information.

3.4.14. A6B2-CWZ3E-1024 Rotary Encoder

This rotary encoder provides feedback of the shaft of a motor using a different
method than the previous encoder. This uses light in order to sense the motion of
the motor shaft. This is encoder is called an optical encoder. It uses a disc that
passes between a light and a sensor to sense the amount of rotation on the shaft
of the motor. This encoder provides a resolution of 1024 light pulses per
revolution. This equates to a 0.35 degree accuracy of motor rotation. This
encoder works between 5V and 12V, so it will be able to run off of our 12V power
rail.

28

3.4.15. Comparison of Motors

Each of the motors that we have discussed has the ability to provide the function
we need. We chose the type of motor that we will use in order to provide our
motion. We needed the motion to be consistent and reliable in order to provide
the scan. The DC motor will allow us to variably control speed and direction. This
would be good at providing the fluid motion. However, accurate motion may not
be easily acquired. The DC motor may hang if the weight of the laser scanner
and platform and then the angle at which the tilt of the laser may not be constant.
This could be remedied using a form of encoder.
The stepper motors could also provide us the motion of the laser mechanism.
Steppers can provide an accurate method of motion and can be controlled down
to less than a single degree. Having the ability to get accurate movement is
crucial to our calculations. However, the stepper motors do something that may
not allow us to use them: they tick. Since the motor is controlled by telling each
internal coil to electrify a certain amount, the motor actually does this by being
fed many small values. This movement creates an unfavorable motion that is not
smooth. It may be possible to use a motor controller to provide small enough
‘ticks’ to give the illusion of fluid motion. Nevertheless, this was a possibility and it
could provide accurate motion for our system.
The servo will provide us a fluid movement much like the DC motor, however, the
servo has a built in encoder. Servos are designed to be accurate. This will
provide us with the fluid motion that is required to get accurate readings as well
as being able to get feedback to verify the angle of the motor.
The following table provides a compares the different motors that we have
discussed.

Part # Hitec
HS-
805BB

Dynamixel
MX-28T

SM-
42BYG011-
25

42BYGHM809 KM-
12FN20-
100-
06120

GB37Y3530-
12V-83R

Motor
Type

Servo Servo Stepper Stepper DC DC

Feedback Yes Yes No No No No
Controller

Needed
No No Yes Yes Yes Yes

Interface Pulse
Voltage

Serial
Comm

Pulse
Voltage

Pulse Voltage Direct
Voltage

Direct
Voltage

Resolution 1 0.088 1.8 0.9 ---- 5.6
Torque 2.42N-

m
2.54N-m 0.226N-m 0.48N-m 0.054N-

m
0.29N-m

Max Speed 0.14
sec/60°

0.079
sec/60°

---- ---- 120rpm 83rpm

Max Amps 0.8A --- 0.33A 1.7A 135mA 0.4A
Voltage 4.8V -

6V
12V 12V 3V 2V - 6V 1V - 12V

Cost $39.95 $219.90 $14.95 $16.95 $15.95 $29.00
Table 3 Comparison Chart of Motors

29

3.5. Microcontrollers / Computing

The system architecture and specifications laid out in the previous section
assumes an advanced computing solution to allow the system to be as fully
embedded as possible. Generating full depth images and publishing them over a
networking framework requires the system have ample memory (RAM) footprints
as well as retain certain hardware I/O requirements. Certain capabilities of the
outlined system have assumed inclusion of powerful open source libraries
traditionally available only on desktop operating systems. Writing specific
implementations of the functions necessary for 3d data visualization and image
processing are outside the scope of this project. This eliminates most of the
traditional commercial market of simple 8 or 16 bit microcontrollers. With the
advent of newer 32-bit ARM based microcontrollers/SOC’s the term
microcontroller has evolved in recent years. Desktop like development in the
embedded space is now possible while still retaining all of the normal advantages
of price, size, and power. Unlike traditional development board offerings of the
likes of Arduino, microchip, or TI’s Launchpad some modern single board
computer offerings have the advantages of actually allowing
development/debugging onboard. These systems are ideal for the scope of this
project as many run full desktop operating systems to enable faster and more
refined development solutions. Most systems run the Linux kernel under popular
Linux distributions such as Debian, Arch, and Ubuntu. These new single board
computers are the reasons that projects such, as the one proposed, are now
possible.

The intent of the proposed system is to alleviate some computation on the end
robotics application. By embedding the computation necessary to control the
pitch, scans, and end translations the saved resources will greatly increase total
system response. Building a system with these capabilities outside of a full x86
architecture would prove difficult due to limitations on available system memory
for storing scan data. Scans generated by the Hokuyo scanner come in at a rate
of 40 Hz with 1080 points per scan. Each point can contain up to 4 bytes (64bit)
of accuracy giving a total scan at this precision a size of at least 4320 bytes or
just over 4 kilobytes (see SCIP 2.0 Hokuyo interface). Even utilization of the 2
character encoding (16bit) will still use over a kilobyte per single scan interval.
Given an average 3D vertical scan range of 45 degrees with 1 degree resolution
each 3D scan would involve at least 90 kilobytes of raw scan storage. Most
traditional 8 and 16 bit microcontrollers provide memory footprints of around a
couple kilobytes. Some higher end 32 bit arm models will offer up to a couple
hundred kilobytes of RAM however this would only allow for minimum accuracies
of 2D data which would hinder the systems intent of high precision. With the
advent of newer ARM based SOCs memory footprints have increased into the
range necessary for a small embedded application. Many new offerings have
come into the market including the Panda board, Raspberry Pi, Beagle board,
and others which offer complete computing solutions within the required memory
footprint. These boards offer the desktop like development desired while also

30

retaining low level I/O. The small footprint of these offerings will allow for a more
streamlined tilting assembly and lower system power consumption.

3.5.1. Raspberry Pi

Released in early 2012 with lots of attention the Raspberry Pi is a small
embedded computing platform with the design goal of bringing computing to
students in all parts of the world. The two variants available of the Pi include a
model A which has price of $25 which is outfitted with a 700 MHz ARM1176JZF-
S ARM 11 processor featuring the ARMv6 ISA. With 256 MB of ram this
computing platform is capable of running full Linux operating systems enabling
developers anywhere to program for a small price. With a power rating of 300 mA
and a size of 3.37 inches by 2.125 inches this microcontroller capable board
carries with it a small footprint and a lot of i/o potential. With a total of 8 GPIOs
(General Purpose Input Output) pins, I2C busses, and full 3.3v and 5v rails this is
a great platform for embedded systems. A bump of ten dollars to $35 will
purchase what is called the model b version which sports similar specifications to
the model a version with a few extra connectivity options in the added Ethernet
and USB ports. The increased price also comes from a doubling of RAM system
wide to 512 MB which is of major appeal to a system looking at storing tens of
thousands of points from laser scans. While the disadvantage to this variant is a
doubling of power consumption to upwards of 700 mA the total consumption is
still less than 5 W. This makes the model b Raspberry Pi a very viable
microcontroller option for the 3D system and would enable a smaller system
footprint given its near credit card footprint.

3.5.2. Beagle Board Black

Similar to the Raspberry Pi, the Beagle Board Black is a low cost embedded
computing solution, although a slightly higher cost. The board has a cost of $45,
with a 1GHz TI Sitara AM3359 ARM Cortex A8 processor. With 512 MB of
400MHz DDR3L RAM and a built in 2GB of storage, the Beagle Bone is able to
run a multitude of different Linux versions. It uses more power than the
Raspberry Pi A but less than the B, drawing from 210-460 mA depending on
conditions of use, although it is almost the same size at 3.4” by 2.1”. It has a
large amount of GPIO pins, with 65 pins available, and has both 3.3v and 5v
rails. Unlike the raspberry pi, the only display option available is HDMI with audio.
During the project we will be using our chosen board as an embedded system,
so the single video output does not affect the board too heavily. The Beagle
Board Black is a good step up from the Raspberry Pi in terms of speed, RAM and
storage for the same size board.

3.5.3. Panda Board ES

The Panda board ES represents a higher end model for an embedded controller,
as the newest model is currently $182, although the higher price is not
unjustified. The Panda board ES comes with a Dual-core 1.2GHz ARM Cortex-

31

A9 MPCore with SMP processor, which is a large step up from the raspberry pi
and beagle bone with double the processing power. It also comes with a
whopping 1GB or DDR2 RAM and an Imagination Technologies’ POWERVR
SGX540 384MHz graphics core, which supports multiple OpenGL libraries and
assists in image processing. The device has the largest physical footprint of all
choices at 4.5” by 4”, with the most internal components as well. Unlike any of
our other choices, the panda board has a built in Texas Instruments WiLink 6.0
Module with 802.11 b/g/n and Bluetooth support which can be used to transmit
data wirelessly to an external device, such as an Android smartphone running
OpenCV to display our depth-images. As the Panda board EX supports Android
and Ubuntu, this would allow for us to use very similar software architecture
between devices. There are no GPIO pins built into the device, though the
Generic Expansion Connectors allow for us to add pins if necessary. The device
runs on a 5V DC connection and has a maximum power rating of 800mA and a
minimum power rating of 170mA. The Panda board ES is a very powerful
microcontroller, albeit a bit large and pricey.

3.5.4. Comparison of Microcontrollers

In order to compare the three microcontrollers we outlined in the previous
section, we must first decide how to compare them. The most important factors
to our project are overall clock-speed, available data storage space, power usage
and size of the microcontroller. The following section discusses each point
respectively.

The fastest board researched is the Panda Board ES, with its impressive Dual-
Core 1.2GHz ARM Cortex-A9, it is over twice powerful as any other
microcontroller we have taken into consideration. On the Single-Core side of our
choices, we have the Raspberry Pi model B and the Beagle Board Black. Both
boards are inexpensive compared to the Panda board EX, with the Raspberry Pi
($35) only beating the Beagle Board Black ($45) by 10 dollars. The two boards
are close in processor power, Beagle Board’s 1GHz TI Sitara AM3359 ARM
Cortex A8 is only 300MHz stronger than the Raspberry Pi’s 700MHz
ARM1176JZF-S.While both boards provide a decent clock speed for our project,
a dual-core microcontroller is in a class of its own. Given the speed at which our
LIDAR sensor will be sending large packets of data, a higher processor speed is
very important for us to be able to view the information in real time without errors.
However, a multi-core processor requires pipelined instructions in order to reach
its maximum efficiency, which are more complicated in nature than those of a
single-core processor. The Panda board ES is our highest microcontroller price
point available, at over three times the price of the Beagle Board Black and over
five times the price of the Raspberry Pi model B.

Given the amount of data we will need to keep stored for quick access, our total
RAM available is an important factor. The majority of data received from the
LIDAR sensor will be stored in RAM, as will the results of any computations on
said data; therefore it is well advised that we have enough RAM to store multiple

32

scans, as well as their visual representations. The Panda Board ES has the most
RAM with 1GB, with the Raspberry Pi model B and Beagle Board Black having
an available 512MB. While the amount of RAM is important to our incoming data
and computation resultant storage, space is still needed for a basic operating
system and our LIDAR code. The Beagle Board Black stands out in this situation,
as it has 2GB of internal storage and a SD/MMC slot for external storage. Neither
the Panda Board ES nor the Raspberry Pi have any internal storage, and require
a SD card for their operating system and code space. While this seems like quite
a hindrance, fast class 10 SD cards are available up to 64GB, which is far more
than we will need and thus not a large issue overall.

In terms of size, the Raspberry Pi and Beagle Board Black combined are still
smaller than the Panda board ES. The Beagle Board Black is the smallest board,
at only 3.4 inches by 2.1 inches it takes up only 7.14 inches2. The Raspberry
takes an incredibly close second at 3.37 inches by 2.125 inches, it’s 7.16125
inches2 area is only two tenths of a square inch larger, an almost insignificant
amount. The two boards allow for the project to be as minimal in area as
possible, as it is intended for a robot with specific size limitations. At 4.5” by 4”
the Panda board ES is larger than either board, with more than double the overall
area than its competition at 18 inches2 used. Between the three boards, the
Panda board ES’s multitude of features cause it to take up a large physical area,
which is a disadvantage in our project.

Finally, we discuss power usage. While all three boards are compatible with 5V
DC power supply, only the Raspberry Pi and Beagle Board Black are able to use
a 3.3V DC power supply. Since we plan to use a 5V DC supply, the alternative
power option is not necessary, though a welcome addition if a lower power rating
is needed. Between the three boards, the Panda board ES draws the most
current, with a maximum of 800mA at full usage. Once again, the Raspberry Pi
and Beagle Board Black are close in specifications, where the Raspberry Pi
model B has a maximum draw of 700mA and the Beagle Board draws a
maximum of 470mA.

33

All of the specifications discussed in 3.5 Microcontrollers/Computing are
condensed into the table below.

Raspberry Pi Model
B

Beagle Board
Black

Panda Board
ES

Price $35 $45 $182

Processor 700MHz 1GHz 1.2GHz Dual
Core

RAM 512MB 512MB 1GB

Storage SD/MMC Slot SD/MMC Slot 2GB internal,
SD/MMC Slot

Size 3.37” x 2.125” 3.4” x 2.1” 4.5” x 4”

Power
Supply

3.3V DC or 5V DC 3.3V DC or 5V DC 5V DC

Max. Drain 700mA 470mA 800mA

Table 4 Comparison Chart of Microcontrollers

3.6. Power

Regulated power to all components in the system is crucial for smooth and
consistent operation. Input into the system could potentially be provided by
multiple sources on the robotic platforms including shore power based systems
or logic/motor battery systems. When the systems are not undergoing testing in
the field the system will be powered by either a 12V or 24V DC system. This
shore powered system consists of AC to DC converters as well as DC to DC
converters to 12V. This system allows for the option of plugging the entire robotic
platform into the wall to keep all essential systems online without the requirement
of the batteries. This allows for the batteries to be charged while development
can continue onboard the system. The same is to be true of the embedded
LIDAR system to be developed.

In order to properly ascertain power management of the system it is expected
that total system consumption be less than 36 Watts total. The breakdown of the
total expected system consumption can be seen in the table below.

Component Expected Voltage
(Volts V)

Average Current
(Amps A)

Average Power
(Watts W)

LIDAR 12.0 0.75 9.0

Motor 12.0 1.25 15.0

Microcontroller 5.0 0.75 3.75

Encoder 5.0 0.10 0.5

Webcam 5.0 0.5 2.5

Total Expected Power Consumption 30.75

Table 5 Expected Power Consumption by System Component

34

With an average of 30.75 Watts predicted for the system the goal maximum load
of 36 Watts is well within reach. Proper testing of each physical component will
be necessary for proper power consumption approximation as each component
is manufactured to different tolerances and will use varying amounts than
specified from the manufacturer.

3.6.1. Regulation

There are different topologies available to convert the 12-24V DC input into the
system down to the 3.3 and 5V logic necessary for the smaller system
components. The two most commonly used regulators are linear and switching
based voltage regulators. Each type has many different advantages and
disadvantages based upon the intended application. With the goal of maximizing
regulator and total system efficiency it is necessary for the group to choose the
best methodology for regulation. Other factors which will be considered by the
group in choosing the best regulator includes the criteria of input/output voltage
ranges, thermal output, package type, footprint size, and external componentry.

Linear based regulators can only step down output voltage from the input
whereas switching systems can step up, down, or invert. Efficiency of linear
solutions is typically lower than that of switching where the difference between
the input and output voltages to the system are great. This would be the case in
this system where the minimum input and output voltages would be 12V and 5V
respectively. It is also a requirement of linear systems that the input current be
the same as the output current which typically causes lots of heat on the
regulator itself. This is a characteristic that is not shared in switching regulators
and is another characteristic of linear design that must be considered when
designing a PCB. However the tradeoffs towards implementation of a switching
system typically include higher complexity in terms of external componentry.
Switching systems can call for the use of many diodes, inductors, and filtering
capacitors before input can be received by the integrated circuits. This contrasts
heavily to the common linear system where the only external components are
usually simple bypass capacitors. The linear systems also do not frequently
experience the kinds of noise and ripple associated with switching systems. This
is highly dependent on the switching rate of the given regulator however and is
not normally a complication. Comparing both linear and switching regulation
technologies it is hard to determine exactly which technology will be used in the
final system. The group therefore decided it would be best to examine products
from both categories to determine the proper integration for the system.

3.6.2. TI LMZ14203 Simple Switcher

The LMZ14203 switching power module is a step-down based switching
regulator solution. The part has been found capable of driving a 3A load which is
sufficient for our power requirement of 6.75 Watts on the 5V rail as demonstrated
in table 5. The IC is capable of handling from 6V to 42V maximum and is
available in a TO-PMOD-7 package. This package type has 7 large pins all

35

oriented on the same side of the plastic housing making it very easy to surface
mount onto a PCB. Upon examining the datasheet provided by TI the following
application circuit was drafted and can be seen below.

Figure 19 Example Circuit Using LMZ14203 Switching Regulator

This example circuit demonstrates a 5V output design from a 12V input with all
external components in place including optional surface mounted LEDs for visual
confirmation of power on the PCB. In total this part would require a total of 12
external components to be driven in this manner. Without the optional LEDs it
would require 8. The ability of this component to accept the variety of input
voltages possible while maintaining efficiencies upwards of 90% makes it an
ideal solution for regulation of the 5V subsystem. With the only external
components necessary being a few resistors and capacitors it provides a simple
reusable design for regulation of many different rails if more were necessary for
the microcontroller selected. The possible reusability makes the chip very
appealing to the group as it could possibly lower overall total time necessary for
the design of the final PCB.

3.6.3. TI LM7805CV Linear Voltage Regulator

The LM7805CV is a linear step-down based regulator capable of delivering 1.5A
at 5V. The system is of a TO-220V which is a three pinned plastic package with
the capability of mounting to a heat sink for heat dissipation. This regulator is
also available in horizontal mount packages which can be soldered or screwed
into a PCB for dissipating heat. The regulator is of a through-hole design which is
typically considered the easiest to hand solder unlike surface mounted
components. From the datasheet an example use case of this regulator was
drafted for use in regulating the expected 12V input into the system down to 5V.
The applicable circuit can be witnessed in figure 23 below.

36

Figure 20 Example Circuit Using the TI LM7805CV

The three pinned regulator only requires a couple of bypass capacitors making
the footprint of this regulation system extremely simple. In total this regulation
system would only require a total of 3 components and two of those are just
bypass capacitors making it ideal for reducing PCB footprint size. On higher
loads however it may be necessary to add a mounted heat sink or add a screw
mount to the board in order to dissipate the extra heat that can be generated on
higher loads. The LM series of linear regulators is very popular in small
embedded projects because of their built-in over current protection which makes
it impossible to draw too much power from them. This is partially due to the built
in overheating protection which can regulate how much power can actually be
drawn through the regulator at any given time. This can provide safety to the
microcontroller and other components in the system running off the output rail
generated by this regulator and makes for an appealing option. The price of this
linear regulator is also much less than that of other more elaborates switching
systems. This is another advantage if more regulators are needed throughout the
system as repeatability will cost less as smaller BOM means a smaller PCB and
a smaller overall cost.

3.6.4. CUIINC V78-2000

The goal of the CUI V78 series is to compete with the success of the TI LM78xx
series linear regulators. An example of one of these regulators can be seen in
the previous section. The V78 family is available in a similar package and can be
dropped into the same footprint as the LM78 series regulators. These
components however are not linear but instead are fully embedded switching

37

regulators similar to that of the LMZ series. The similarity to the LM78 regulators
means the same circuit seen in figure 23 can be used with this IC.

Just like the previous LM TI series the V78 needs only two bypass capacitors for
normal operation making its foot print the exact same to that of the TI linear
solution. The output of the V78-2000 is 2A at 2.5, 3.3, 5, or 6.5 volts. This is due
mainly to the fact that it is a switching based regulator and thus the switching
frequency can be modified to the require output voltages. This provides a lot of
the same flexibility as the TI LMZ based switching regulator but with all of the
advantages of a smaller linear solution. That is to say it also has a similar
efficiency curve to match that of a normal switching system. There is a stricter
limitation however on the available input voltage range being from 4.75-18v.
Assuming a 12v input into the system however it is still well within tolerance. The
overall smaller footprint also means that more components or additional
regulators can be fit onto the PCB without sacrificing price which is not normally
the case for a switching regulator. This makes the CUI V78 series an appealing
option as it would appear to have all of the most important advantages of both
linear and switching technologies without introducing any new drawbacks.

3.7. Waterproof Connectors

As part of the project requirements and the expected operating environment of
the proposed system it has been deemed necessary to isolate connections from
the 3D laser system to the other components on the robotic platforms. This helps
to ensure compatibility with current external connection systems which already
exist frequently on the robots in the organization currently. It will also ensure
operational safety to the individual components on both ends of the connection.
At minimum the power lines should be protected from the elements as to ensure
that no excess in humidity, condensation, or other forms of moisture are able to
cause shorting across the DC inputs into the system. These inputs could be
supplying upwards of 30 Watts at any given time and a short could cause
catastrophic failure to other systems tied into that input if a short were to occur.
Waterproof connectors will also provide an easy way to disconnect and
reconnect the system in a regular fashion as will be necessary moving the
system across multiple platforms.

3.7.1. Weipu Connectors

Running power to and from the boxes and enclosures of the various robots to the
embedded LIDAR platform requires a safe interface which can withstand a
variety of different weather conditions. Attempting to achieve the NEMA standard
of IP45 or better requires a minimum level of waterproofing. Finding a series of
connectors with multiple footprints, connector ratings, and multiple conductors is
a vital aspect of a successful embedded LIDAR solution.

38

Figure 21 Weipu Connectors Mounted

3.7.2. Bulgin Buccaneer Connectors

The Bulgin Buccaneer connectors are highly durable connections. These
connectors allow for solid data connections in tough environments. The
Buccaneer connectors are also waterproof. This would allow our system to be
utilized in a wet environment. The IP68 Buccaneer waterproof connector system
allows for a rated voltage of up to 277V and rated amperage of up to 12A. These
connectors offer a scalable number of connection terminals. Depending on the
application that is necessary, these connectors could have 2, 3, 4, 6, 7, 9, 12 or
25 poles. With each additional pole that is used the maximum number of amps
that can be carried over the connectors decreases. Using the maximum number
of poles, 25, the connector can only handle 50V, 1A lines.

These connectors have been rated to use different protocols, standards and
interfaces. Using these connections, we can implement IEEE 802.3 Ethernet
communication. Using full-duplex Ethernet over these connections is possible
and would allow for waterproof connection of lines that could be used for
communication via TCP, UPD, or other network communication methods. These
connectors are rated for use as cat-5e. This standard allow for power over
Ethernet as well as data. This also enables high data rates, up to 1000Base-T.

39

Firewire and USB2.0 interfaces are supported via these connectors as well. With
these connectors, the host system can communicate with USB peripherals in a
waterproof environment. USB2.0 provides high speed serial data communication.
This could allow for multiple component communication through this single
connector. USB2.0 supports a maximum of 480Mbps throughput. This speed will
be split up between communications for each device that is shared on the same
bus.

The connectors feature multiple safety features that prevent accidental
connections and potential catastrophic scenarios. The connectors feature screw
on caps that are keyed in a certain way to make sure that the connection cannot
be mistaken. The caps do not require tools to connect either. Using tools could
potentially create too much force on the connections and would possibly allow for
stripping of the connections. Only allowing hand-tightened connections keeps the
possibility of damaging the connections at a minimum.

These connectors also feature a number of O-rings prevent leakage and
maintain the constant pressure to remain secure. There is also a gland and a
gland nut that keep the water from entering the electrical areas of the connector.
All of these precautions will allow the connector to remain dry and operate as a
normal connection would. The cost of these connectors may be limiting on a
large scale, but for a small scale project, they would be fine.

As well as waterproof, these connections advertise themselves as dust proof.
Many military applications require use of electronics in the desert. The desert can
lead to corrosive and deteriorating environments that would otherwise destroy
electrical connections. Using these connectors, the sand and water would not
reach the electrical components and allow for a much longer and safer lifespan
for the systems involved.

40

Table 6 Bulgin Buccaneer Connectors

3.8. Data Representation Software

A point cloud is a 3-dimensional representation of space. It includes an X, Y, and
Z plane. This can include single or multiple objects.

Figure 22 Point Cloud Image

(Permission granted by PCL)

We are using point clouds to represent our environment in front of our sensor.
We are collecting information from our laser sensor and then creating our point
cloud on the fly. Although point clouds represent 3D objects and environments,
they are merely a snapshot of the world. In order to utilize the point cloud the
information held within must be manipulated and processed to be usable. The
use of object recognition or surface recognition may have to be utilized in order

41

to see an actual surface.

Representing the information will require the use of 3D rendering software. This
software will display using the given coordinates, X, Y, and Z. Some current
software such as Autodesk AutoCAD, will take this information and use detection
algorithms in order to differentiate between different objects and surfaces. A very
powerful library for the use and manipulation point clouds is the Point Cloud
Library or PCL.

The Point Cloud Library is a standalone, large scale, open project for 2D/3D
image and point cloud processing. Since March 2011, the site has been devoted
to the mapping of 3D image representation and creation.

This library contains many modules: filters, features, registrations, kdtree,
segmentation, sample consensus, range image, keypoints, octree, surface,
visualization, and IO. Each of these modules gives high level access to functions
and methods below them. The module that may interest us the most for our
project is the Range Image module.

The pcl_range_image library contains two classes for representing and working
with range images. A range image (or depth map) is an image whose pixel
values represent a distance or depth from the sensor's origin. Range images are
a common 3D representation and are often generated by stereo or time-of-flight
cameras. With knowledge of the camera's intrinsic calibration parameters, a
range image can be converted into a point cloud.

Another module that will help us in our project is the IO module. The pcl_io library
contains classes and functions for reading and writing point cloud data (PCD)
files, as well as capturing point clouds from a variety of sensing devices. Using
this library in conjunction with the API provided by our laser sensor, we may be
able to create a dynamically changing point cloud that we can represent.
A third module that we can use is the visualization module. The pcl_visualization
library was built for being able to quickly prototype and visualizes the results of
algorithms operating on 3D point cloud data. This will allow us to assemble the
point cloud library in order to view it. This is not necessarily needed for the core
function of the application, but is needed for debugging and human interaction.

3.8.1. Depth Imaging

Sometimes you cannot choose the optimum angle to take a picture. If the object
is essentially planar (e.g. a painting on a wall) or the angle is not off by much
then there is hope that you can correct the perspective afterwards. This is highly
the case in our project, where we will be accessing an angular view of the
immediate area. As such, it is essential that we have the ability to transform our
circular view into an image that can be represented on a 2d plane (computer
monitor). Using our algorithm, we calculate the distance from our plane of view to
each point on the rotational axis that is read in. Once the horizontal plane’s

42

points have been converted from polar, each horizontal line is interpreted using
the same algorithm.

3.8.2. OpenCV

OpenCV is a cross-platform library of programming functions mainly aimed at
real-time computer vision, focused mainly on real-time image processing. We
use this library to alleviate some of the design time needed to create our LIDAR
image processing software, as many of the functions we use are included in the
OpenCV library. We mainly use two libraries, calib3d, and imgproc. We have
debated using objdetect to add extra functionality to our design. calib3d, Camera
Calibration and 3D Reconstruction. This library interprets our raw LIDAR data
and translates it from a polar coordinate array to the single plane array we intend
on displaying using perspective transformation. This library is called often, as we
need to interpret each line of data as it passes from the LIDAR to our board. The
2d data is stored in an alternate location to that of the polar data, and is passed
to image processing. imgproc, Image Processing. This is the library used to
create the depth coloring to our images. The library allows us to take the
converted polar data from the 3D Reconstruction module and translate it to a
depth field understandable to the human eye. This is done using the Geometric
Image Transformations module within imgproc. There are multiple filters we can
use to get the correct final image out of our data. This module also allows us to
do motion analysis and object tracking, if we see fit. We have considered this
option, and it is currently still being discussed whether or not to add in, as the
work it adds may be more busywork than research and design. We may also add
a basic object recognition module here, if we see it to be fitting with the design.

3.8.3. SimpleCV

SimpleCV is a computer vision library. They advertise the library as being simpler
than alternatives. Even though it is simple, it does not mean that it is
underpowered. It has many equivalent functions that are included in OpenCV.
The SimpleCV library contains a section ‘ImageClass’. This class provides the
ability to do a vast amount of image manipulation and capturing. Using what we
know of the physical setup, we could use that input to generate the functions that
would enable us to warp and transform the images to fit into our rendering. Using
the edge detection portion of the library, we could find key point in our image that
we can use for alignment. In order to convolve the point cloud with the real world
image, we would need to use the already created point cloud with the functions in
the Stereo Image library. The SimpleCV library could be very useful in our efforts
to transform the data that we have created. It could possibly prove to be simpler
for creating our human viewable outputs since it has a much more simplified
usage than OpenCV.

43

3.8.4. PDAL

PDAL, or Point Data Abstraction Library, is a library focused on the manipulation
of point cloud data. It is primarily focused on managing LIDAR data, but branches
into other point cloud data as well. PDAL is sponsored by the U.S. Army Cold
Regions Research and Engineering Laboratory. The PDAL library is not nearly
as extensive as the point cloud library as it does not focus on the interpretation
and visualization of point cloud data. PDAL is focused on reading, writing, and
basic filtering of point cloud data. PDAL is a C++ library that can compile on Unix
based operating system or windows. One of the major factors for using PDAL
would be to streamline the data translation information. This may have proved to
be worthwhile when transmitting our data to and from the host and clients. There
are specialized algorithms that allow large speed increases for reading and
writing the data that may improve the overall latency of the process.

44

4. Design

4.1. Hardware Design

Concerning the electrical design of our system, we must identify the structure
required to facilitate its intended functions. The MCU accepts input from the
LIDAR sensor and orientation sensor as well as motor feedback. That input is
interpreted together in order to ensure our resulting images are correct. In
addition to the input the MCU must accept, it must also send the interpreted data
to our PC for image display. The following block diagram depicts the basic
electrical subsystem of our project.

Figure 23 Hardware Block Diagram

We regulate the power supply’s voltages, as each of the different hardware
subsystems requires a different voltage to run correctly. The specifics of how
each subsystem is powered are discussed in their relative section.

45

4.1.1. Hokuyo UTM-30LX 2D Laser Range Finder

The Hokuyo UTM-30LX 2D Laser Range Finder allows us to scan distances up
to 30m away with high accuracy. This LIDAR can be controlled using USB
connection with the provided SCIP ver2.0 protocol, which can handle up to
12Mbps of data. The laser operates between 10-12 volts. Since our system is
designed on a 12V rail, there are no extra components needed to power this
device.

The UTM-30LX can scan up to a 270 degree arc with an angular resolution of .25
degrees, giving us up to 1080 distance values per scan. Using the SCIP
interface, we can change the total scan angle, as well as the start and end points
of such, as shown in the figure below.

Figure 24 Hokuyo UTM-30LX Scan Steps

(Figure used with permission)

Each scan follows the same series of steps, as seen in the figure above. Step 0
is the first measurement point at which the scanning unit is enabled, though no
data is sent until it reaches step A, the initial measurement step of detection
range. This step is very important, as it does not occur until the UTM-30LX has
reached the desired starting angle provided by the user. Step B, the sensor front
step, is reached at the same time each scan, as it is at a point normal to the front
face of the device. Step C, End point of detection range, is the other user defined
step. Similar to step B, this tells the LIDAR when to stop recording the data it is
scanning. Steps B and C are very important, as they allow us to set our start and
stop angles at any point outside of the dead zone.

While the UTM-30LX has a maximum scan angle of 270 degrees between step A
and step D, the LIDAR rotates through a 360 degree circle, such that it starts and
ends at the same point each time. No matter the chosen scan angle, one full

46

rotation will always take 24ms. Once one full rotation is finished, the UTM-30LX
sends out a 1ms low pulse. This 1ms low pulse is used for synchronous output.
This allows us to not only be aware of a completed scan, but we can also use
this synchronous pulse to drive the Dynamixel MX-28T Robot Actuator,
coordinating the rotation between the two devices. The process of rotation and
synchronization is shown in the figure below.

Figure 25 LIDAR Sync Pulse

(Reprinted with permission from Creative Commons License)

4.1.2. Timing

As microcontroller timing is critical for this project, we will needed to connect the
synchronous output from the UTM-30LX to the Raspberry Pi. This is done by
connecting the COM and synchronous output from the UTM-30LX’s 4-pin robot
cable to two of the eight available GPIO ports on the Raspberry Pi. Each pin of
the robot cable has a different purpose, but we only need to connect the
Synchronous/Detection output and the COM output to the microcontroller for it to
receive the 1ms Sync Pulse.

47

4.1.3. Power Requirements

The Hokuyo UTM-30LX is designed to use a 12V DC power supply, though it is
capable of functioning with a 10% tolerance, allowing a fluctuation from 10.8V to
13.2 V. While we plan to for the voltage to stay at a solid 12V to keep the LIDAR
unit at a safe voltage, there is some room for leeway. The UTM-30LX typically
draws 700mA of current during standard operation, but can pull up to 1A at
maximum. The unit does not draw more than 8W total. If the UTM-30LX is not
powered with over 10.8V the device does not function, though the low voltage
LED is triggered to indicate that the in operation of the device is not due to a
software or hardware error. If the UTM-30LX is given over 13.2V, it is possible
permanent damage to occur in the hardware, a risk that must be avoided at all
costs, as the LIDAR unit makes up a very large majority of our budget. The
LIDAR unit will still display the green power supply LED if unable to draw the
amperage needed, though its functions will be impaired. In this case, we can
monitor the frequency of the sync pulses received to ensure that the unit is
spinning at the correct 2400RPM. Similar to the previous case of excess voltage,
if there is too much amperage in the system, it is possible for the system to
receive irreversible damage to its main components.

The UTM-30LX is designed to operate at a temperature range of -10° Celsius
(14° F) to 50° Celsius (122° F). As testing and storage will occur in Orlando,
Florida and the final product will be used in Virginia during in July, we need not
worry about either of these temperatures. Orlando has never reached either
extreme temperature, as its record low is 18 and record high is 103. Even in July,
Virginia has never reached over 110 degrees thus will not conflict with the UTM-
30LX. On the other hand, the LIDAR unit is also designed to operate at less than
85% relative humidity, which may be a possible issue given its Florida location.
However, as the UTM-30LX has seen service in previous AUVSI RoboBoat
competitions without fault, the device appears to be able to operate above its
written tolerance, though the humidity of the lab will be monitored to avoid
damage.

The system will have an external DC power source of 12V and 24V. We will be
utilizing the 12V power rail in order to supply most of the power to our devices.
The 12V power source is supplied from a battery that is powering the external
system. The external system is a mobile unit. It will be working in the field. This
means that our laser range finder will be subject to environmental conditions that
we must take into account when hooking up our power and data connections.
Also, we will need to assume that the 12VDC that is supplied to our system is
actually within operating range. With DC power systems, this cannot be
guaranteed and usually the power will start high and drop lower as power drops.
This means that our working DC voltage values are somewhere between 13.5V
and 9V.

48

In order to compensate for this fluctuation of the voltage, we will need to look at
each of our components. The Hokuyo 2D laser scanner can operate between the
voltages of 10V - 13V. This is an acceptable range to deal with the fluctuation of
the power. We will need to advertise our constraints to the external system to
make the end user aware that the voltage will need to stay within that range. We
monitor the voltage in our control system and provide a safe shutdown and a
warning before the actual voltage drops below operating values and potentially
causes damage or corruption within the system.

The HD camera would be powered from the Raspberry Pi USB port. Since we
are already regulating the voltage for the Raspberry Pi, it would provide regulated
voltage to its daughter components.

The logic pins on the Raspberry Pi will need to be corrected in order to be
utilized. Most of the devices logic is in 5V, but the raspberry Pi logic is based on
3.3V. This creates the issue of overloading the logic circuits and potentially
damaging the whole system. We will be using the 8-channel bi-directional logic
level converter, TXB0108 in order to use the higher voltage logic on our lower
voltage logic board.

Figure 26 Pinout of the TXB0108 8-Channel Logic Level Converter

(Reprinted under creative commons license)

4.1.4. Raspberry Pi Model B

The Raspberry Pi model B allows us to use a credit card sized microcontroller to
take and interpret in LIDAR data, control the Dynamixel MX-28T Robot Actuator
and send interpreted data to the external display system. The raspberry Pi model
B is powered by a 5v micro USB. The device’s current requirement is dependent
the number of devices connected. We have found that purchasing a 1.2A power
supply provides with ample power to run the Raspberry Pi. The model B
commonly uses 700mA-1000mA depending on what peripherals are connected.
The maximum power the Raspberry Pi can use is 1 Amp. The power

49

requirements of the Raspberry Pi increase as various interfaces are used. The
GPIO pins can draw 50mA safely; (50mA distributed across all pins, each GPIO
pin safely draw 16mA maximum), the HDMI port uses 50mA, the camera module
requires 250mA, and a keyboards or mouse can take from 100mA to 1000mA.
For our usage, the only things connected to the Raspberry pi during operation
will be the Hokuyo UTM-30LX, the Dynamixel MX-28T motor serial connection,
the pc, and the webcam.

The Raspberry Pi model B microcontroller has a total of 26 available pins. These
pins are used for different bus types, General Purpose Input/Output, as well as
power and ground. The section below details the usage of each bus.

3.3V 1 2 5V

I2C1 SDA 3 4 5V

I2C1 SCL 5 6 GROUND

GPIO 4 7 8 UART TXD

GROUND 9 10 UART RXD

GPIO 17 11 12 GPIO 18

GPIO 27 13 14 GROUND

GPIO 22 15 16 GPIO 23

3.3V 17 18 GPIO 24

SPI0 MOSI 19 20 GROUND

SPI0 MISO 21 22 GPIO 25

SPI0 SCLK 23 24 SPI0 CE0 N

GROUND 25 26 SPI0 CE1 N

Table 7 Raspberry Pi Model B Pin Out

A General Purpose Input/Output (GPIO) pin has a behavior defined by the user,
and are unused by default. As such, each enabled pin can be either an input or
an output; usage of the pin is at the discretion of the user. GPIO pins numbered
7,11,12,13,15,16,18 and 22.

Also known as the Inter-Integrated Circuit Bus, the I2C is included to provide
communications between multiple integrated circuits, including the Broadcom
BCM2835 SoC processor built into the system. These pins also allow access to

50

the Raspberry Pi’s pull-up resistors, allowing for access to I2C functionality
without needing external resistors. Specifically, pins 3 and 5 are for the I2C bus,
pin 3 providing the Serial Data Line (SDA) signal and pin 5 providing the Serial
Clock (SCL) signal. The I2C0 bus is not the only I2C available; however the I2C1
is terminated on the raspberry pi’s circuit board resistors and unavailable.

The Universal Asynchronous Receiver/Transmitter (UART) bus is located on pins
8 and 10. Pin 8 is used for message transmission, pin 10 for message receiving.
This bus provides a simple serial interface, requiring only 2 wires for access.
These ports can be used to display kernel data if connected to a device capable
of receiving and displaying the serial messages. While not necessary for any of
our LIDAR functions, the UART bus is useful for debugging the raspberry pi if
errors do occur.

The Serial Peripheral Interface (SPI) Bus is used mainly for in-system
programming, a process that allows an embedded device to be programmed
when installed into a system, instead of pre-programmed. In our case, this would
allow us to re-program the raspberry Pi on the fly. Unlike the previous I2C and
UART busses, the SPI bus uses five pins instead of two, allowing for
communication with more than one device. Of these five pins, pin 19 provides the
SPI Master Output, Slave Input (SPI MOSI), pin 21 provides the SPI Master
Input, Slave Output (SPI MISO) and pin 23 provides the Serial Clock (SCLK).
The last two pins, 24 & 26 are used in tandem for Chip Select signals, allowing
for up to two independent slave devices.

The Raspberry Pi also provides two 3.3V and two 5V pins, along with four ground
pins to complete any needed circuit. Unfortunately the LIDAR unit is unusable at
such low voltage, as is the Dynamixel Servo.

4.1.5. Dynamixel MX-28T Robot Actuator

The Dynamixel MX-28T Robot Actuator servo allows us to move the laser
precisely. This servo can be controlled via serial communication and provides
location feedback. This servo operates between 9 - 12 volts. Our system is
designed around a 12V rail, so this servo will not have to have extra components
in order to allow it to function.

The servo rotation can provide us with 360° of motion. We will be utilizing all of
this motion since the laser will be rotating in full circles to acquire the greatest
amount of data. Since this servo will be in constant motion, it needs to have a
tolerance for heat. The highest operating temperature of this servo is +80°C.
Throughout our tests, we monitor the temperature and verified our assumptions
that we will not exceed that temperature.

The servo moves our laser and platform. The weight of these objects do not
exceed the 2.6 Nm torque maximum of the servo. We did not witness any

51

opposing forces upon our motion, so the weight and friction of movement are the
only aspects we took into account. This was verified within testing. As part of the
project specification, we designed the laser to be able to have dynamically set
scan speeds. The maximum speed of the servo at no load is 0.079 sec/60°. This
will suffice our project since our laser will be a limiting factor in our scan speeds.

In order to provide motion to the scanner, we will have to create a platform that
will hold the laser and manage the cabling. We will be using a slip ring with
connections because the actuator will be rotating 360 degrees, it will be rotating
360 degrees continuously. The orientation of the laser is perpendicular to the
normal view. We will be utilizing the rolling scan method.

Figure 27 Laser Mount Outline

This method will allow us more easily rotate the laser and obtain a consistent
image. However, it’s not without its caveats. This method, at the worst case,
requires us to complete a half scan in order to create a complete horizontal
image. Through testing, we determined if the scans can be completed timely
enough and they were. If we were to use a pitching scan, it would allow us to get
a single horizontal scan immediately. This may be better suited to faster moving
mechanism, and may be able to be changed in future renditions of this scanner.
Our rolling scan method will made construction more complicated. In order to
scan properly, we will need to rotate the laser scanner upon its axis of rotation.
The shaft of the rotation will come from the side and the rotation would move the
entire platform. This produces less shear forces on the servo and can provide a
more consistent rotation. Even though there is feedback provided to our system,
it will create a more consistent and even timeline. This proved to be more
essential when developing software and for real time operating.

52

4.1.6. Motion

The design implementation will followed the rolling scan implementation as
outlined in the 3.3.1 section. It has been evaluated as having the greatest
available 3D scanning range and resolution given the complexity. Prototypes
were also created using other 3 dimensional rotating techniques including the
pitching and rolling systems. The figures below showcase Solid works renderings
of previous prototypes designed by the group.

Figure 28 Pitching Scan Prototype

The pitching prototype is a gear based system with complex rotational assembly.
A curved gear rack is fixed to the sensor on the back from a plate which is then
bolted to the bottom of the sensor. The rotating gear above the Hokuyo spins
from torque generated by the sideways mounted motor spinning the entire
assembly up and down generating a pitching volume. The rendering shows to
scale the rack, gear, and laser mounting bracket to be fabricated either via plastic
molding, 3D printing, or professional CNC machining. Missing from the rendering
is the housing for all electrical components including panel mounted waterproof
connectors, the microcontroller, and PCB for power regulation to the laser and
motor systems. The box would house the motor and gear with a slotted design to
allow the curved gear rack too freely around it. The back of the box will provide
mounting solutions to a mast along two axes for better platform compatibility with
the current robotic platforms in the club. Overall this design is projected to weigh
approximately 4.2 pounds and have a footprint of 5.3 by 6.2 by 7.4 inches.

53

Figure 29 Rolling Scan Model

The rolling scan model, unlike the pitching prototype, is a direct interface based
system with a single mounting bracket. The bracket provides a connection to
hold the sensor while also placing the motor at an appropriate height to achieve
the correct movement of the sensor. The axis of revolution is generated by the
rolling mounting plate generating a rolled capture volume. The rendering shows
to scale the mounting bracket to be fabricated either via plastic molding, 3D
printing, or professional CNC machining. The box will house the motor with
connectors to route the laser wires through. The back and top of the box will
provide mounting solutions to a mast along two axes for better platform
compatibility with the current robotic platforms in the club. Overall this design was
projected to weigh approximately 3.6 pounds and have a footprint of 4.3 by 5.4
by 5.4 inches.

4.2. Software Design

This project utilized more software development than anything else. This includes
reading sensor data, controlling motors, reconstructing images, generating 3D
point clouds, and communications. Throughout this section, we will be describing
the different functions of our project: control communication, image translation
and reconstruction, and representation of the data. This system is utilized in an
existing real-time robotics application. The 3D laser range scanner we developed
needed to be able to send out standard information that a robot can read and
then use to understand its environment. Thus, the software was tailored to a real-
time system instead of a non-real-time system.

Once the system is powered on, the control system begins to initialize. Since this
is a kernel based software approach, there is latency in order to load the OS and

54

applications into memory. In order to verify that the system is connected, we
have an LED indicator start flashing once points are being read. First, the control
system will power on the laser scanner as well as the motor mechanism. The
external system will not need send the command to the control system to begin
scanning. The system automatically initiates scanning the information into
memory. The control system will stores the most recent version of the information
and sends it out as fast as possible and will constantly keep it up to date. In order
for the external system to receive the complete data, it will need to request it from
our system. This is done through our own communication protocol. The original
plan was for the external system to ask for either a complete set of data, a finite
set of data, or even a single point, but instead, the point clouds are automatically
sent 1080 points at a time. The returned information is in the form of a point
cloud which is just an r, theta, phi spherical matrix of the locations of a surface.

The main application service will be running on the client. Here the system could
obtain the 2D Hokuyo laser depth data and the HD camera image. This
information could then be interpreted and diplayed. The client could also be able
to generate a number of rendered images for the user, but this will take more
resources. The client could output the rendered point cloud data with only point,
a colorized spatial image, or a transposed 3D image using the HD camera and
the point cloud data.

Figure 30 Software Block Diagram

4.2.1. Laser Communication

The Hokuyo laser scanner has an accompanying C++ library called URG. The
URG library spans many of the laser scanners and includes the basic
functionality in order complete the main tasks using one of the supported
systems, which in our case is Linux. Within this library we will be utilizing many of

55

the functions provided in order to create our scans.

In order to initialize the Hokuyo scanner, we are using the the urg_sensor.h
library file. This library file allows us to specify a communication port and baud
rate. The Hokuyo sensor uses RS232C in order to communicate, so these
attributes must be set. Using the urg_open library call we can then start
communication between the system and the laser sensor and begin the process
of collecting data.

The next library we will are using is the urg_utilis.h library. This library provides
us with the ability to send commands to the Hokuyo sensor and collect data. We
will first need to set our scan rate. As the sensor is not a 3D laser scanner, it only
has a single axis of rotation to worry about. This axis of rotation will provide us
data from a horizon and we can then interpolate those points into a 3D map after
moving the laser. To set the speed of the laser we call the
urg_set_scanning_parameter from the urg_utils.h library. We need to pass it a
few variables. First we need to pass it the variable that contains the
communication information, then the max and min values, and lastly, the interval
rate. The laser outputs a voltage jump to signal that a scan has finished and is
moving on to the second scan. This can be seen in oscilloscope output figure.

Figure 31 Oscilloscope Output of Laser Synchronization Signal

The max and min values remain constant throughout the lifetime of the project;
however, these may need to be changed after field work occurs. The interval
steps will be user customizable since it may be necessary to have a higher
resolution or a lower resolution depending on the usage of the scanner.

In order to receive data from the laser, we need to poll it for information. Since
we continuously get the data, we created the code in order to continuously poll
for the information. Using the library already added to the project, we will call
urg_get_distance. This will return a radial distance back from the laser scanner.

56

We then pass it the device connection setup information and the input buffer
value. The buffer will be allocated based on the desired range of view.

Utilization of the C++ library will allow us to recreate a 2D map of a single scan.
After which, we will use our developed application to translate those 2D maps
into our 3D Point Cloud. There are numerous commands that we are using with
the Hokuyo laser scanner in order to have complete operation. The following
table provides the view of some of the members of the URGCtrl C++ library that
we utilize:

4.2.2. Dynamixel MX-28T Servo Communication

The Dynamixel MX-28T Robot Actuator will provide motion to the laser
mechanism. This servo will provide the rotational motion on the x-axis of the
laser scan. The servo is controlled using a serial connection from the
microcontroller. It allows for setting of the angular position on the motor as well
as provides feedback to the microcontroller. The servo will provide 0.088 degree
accuracy which allows us to accurately reconstruct our 3D image.

With this servo, you can initialize a starting point. This will allow us to run a
calibration before starting our scans. This proved crucial in our code as we will
need to make sure all values are correct and are relative to a given “zero” point.
RS485 asynchronous serial is the method of communication for this servo. It
allows for commands to be sent or received at any time. This is a type of two wire
communication. It does not regulate or guarantee speed or accuracy in this serial
communication standard. Compensation in the code was written in order to
maintain a consistent line of communication.

This servo allows for multiple baud rates. We chose a high baud rate In order to
get the most real time information and also wanted to verify the amount of error
from the line was minimal, which it was. Communication for the servo is done
using an instruction packet. In order to read or write data, the memory address
must be referenced. The two section of memory are the EEPROM and RAM. The
EEPROM can be used to program values of the servo that will not be erased
power is removed. Alternatively, RAM is only used to operating values and will
not remain in memory without power.

4.2.3. Webcam Communication

Communication to the HD camera could have been achieved through a custom
library that runs in the user space of the Linux operating system called
VideoforLinux2. This is software accelerated so the image will need to be
buffered and then rendered for each image. We would have been able to control
the access that camera has and may only need to take images every few
seconds or we may sample from a video feed.

57

4.2.4. Platform Communication

The goals of this project it was to be able to create 3D spatial representation of
an environment for use on a kinetic robotics application. We needed to output to
the robot a dataset representative of what is in front of it. We will be utilizing a
serial connection for data extraction from our system. UDP communication allows
us to communicate the point cloud information with any listening clients. This will
allow us to create a packet that contains the necessary information. The robot
will interface with our LIDAR system and output the point cloud information. We
will create a set of predefined commands that will then get an appropriate
response. Most of the time it will be requests for location data, however there are
additional functions that allow settings to be altered such as sampling rate,
sampling angle, maximum and minimum degrees for the field of vision, and other
various settings.

The packet structure used will contain a header file that provides basic
information for transmission of the data. It will contain at least the initialization bit
for the transfer, the packet length and a format ID. The packet will then contain
the payload. This payload depends on the context of the situation. If the system
was asked to supply information about the orientation of the laser scanner, then
the payload will contain a specially created payload for representing that data.
We had hoped to create a protocol similar or compatible with the ASPRS LIDAR
Data Exchange format.

This is a standard used by existing LIDAR systems; however there are numerous
points of that protocol that do not apply to our project. For instance, we do not
have a GPS on our system and one of the requirements on this standard is that
we have GPS coordinates. We chose not to include this standard.

The coordinates will be output constantly and will be supplied using the most
recent scans. The system is not designed to remember or map out the 3D
environment, but only to show what is currently known and can be seen for use
for awareness and avoidance. The packet can come in multiple ways depending
on the request. Originally, we allowed the request for a complete image and then
we will supply a full 3D point cloud of the current image, but was altered after
testing proved that it took too long to transfer that data. The method we used
returns of only a portion of our known image, it returns a single scan from the 2D
Lidar with interpolated r, theta, and phi points. This was useful for applications as
the data needed to be smaller in order to transfer in real time over UDP. At this
point the client can manipulate the point clouds as it sees fit. It may be useful if
only a certain section is being monitored and waiting for movement in order to
react. The other method that data can be viewed is scan by scan. The client
could only to see the newest scans that it has received. There may be a wall in
front of the laser scanner that exists and when the wall is removed, the
application may want to react, but this is up to the client.

58

Each type of packet request data was going to have an identifying ID associated
with it that is known in the protocol we would have developed. These numbers
could have been any arbitrary ID, but it would have to be unique. In order to have
a unique ID, we will be using 3 Bytes of data. This would provide us with a
sufficient amount of data to have many commands as well as having the ability to
discriminate which commands were sent. Each of these commands will then
have a known structure. The payload may be larger or smaller depending on the
command and will each contain a byte for length at this level if the amount is
dynamic. Otherwise, it will be a known static length.

Each of the payloads would have a known termination byte sequence
established with the protocol. This is will serve as the flag that the data is
complete. Once the header and payload have been finalized, the whole packet
will need a checksum or sorts. A CRC could be calculated on the packet and
tagged on to the end. This CRC could then be calculated on the receiving end to
verify that the data packet they have received is complete.

What was actually used was a UDP multicast transfer. Once the Lidar was
operational, it begins sending out packets that are compiled and adjusted. It
sends one 2D lidar scan at a time until the queue is empty. At the same time,
more scans are added to the queue. This limited the amount of data sent out at
once and allowed for real time rending on the client side. We found that this
method utilizes about one megabyte per second of network bandwidth. Since it is
multicast, anyone on the network can listen without hindering the Pidar.

4.2.5. 3D Creation

To fulfill the goals of this project, a 3 dimensional image had to be created. The 3
dimensions will be the r, theta and phi or depth, angle to depth, and angle of
motor respectively. In order to create the image, we must first read the sensor
data of the Hokuyo 2D laser. This information will only provide us with the
horizontal and depth portions of the image. This information will be obtained and
retained in memory. Depending on the scan resolution decided by the
configuration of the user, the system will tilt a certain number of degrees to obtain
a second 2D scan. This again will retain into memory. This pattern will continue
continuously and a full image is obtained when the motor has rotated 180
degrees. It then continues to rotate to get an additional image. Depending on the
speed of the scans set in the configuration by the users, a single scan should not
take much time. The time to scan should be set sufficiently to provide an
accurate representation of the image ahead of it before that image can change.

Now that the memory is filled with N numbers of 2D scan lines the process of
placing them together can occur. Depending on the ability of the code, this may
happen in tandem with the scanning. The 2D scan lines are based on radial
distances. These distances must be corrected for timing between the laser and
the motor. We will not discard this information, but are merely interpreting it.
These polar coordinates may be beneficial to the attached system as they will

59

attribute angle as well as magnitude of a certain object. We will repeat this
process for all of the scan lines that were taken. The 2 rotational components are
the laser scanner which is rotating on the y axis and the platform that is rotating
along the x axis. The polar lengths will correspond to both of those rotations. This
will mean that we will be taking the magnitude of those points and projecting it
onto our new image.

Figure 32 Projecting 2D Image from Radial Scan

With our image we will retain a map. This map will allow us to maintain the
information of the distances at each of the points; this is called a point cloud.
With this information we can represent the image in corrected 3D. This will allow
for a screen representation and rendering. This also will allow for finer
adjustment and debugging.

In order to achieve this transformation we will need to utilize a formula for
projecting an image onto a 2D surface. The following formula will allow us
achieve this action:

This formula represents the projection of an image through a camera matrix. The

camera represents our point of view. The represents the amount of rotation
and translation from the original point that is used when transforming to the 2D
image. Applying this formula will be done using existing libraries within the
OpenCV library. It is determined by the client which angles are appropriate for
viewing.

4.2.6. Point Cloud

Previously, we have described how to scan in the 2D images and create an
image. The distances that correspond with those points allow us to create a map
in 3D. This is called a point cloud as seen in figure 37. Using the 2D information
that we have collected we can create a 3 dimensional array of information.

60

(Permission granted by PCL)

Figure 33 Point Cloud Representation

This will act as our coordinate system for our point cloud. This point cloud will not
be able to be used as a reference. For example, if the robotic application would
like to know what the closest point to it is, we would call on the point cloud and
using an search algorithm, the client will need to find the range of closest points.

To actually fulfill the duties of the above actions, we will needed to utilize libraries
that have been written specifically for image capturing and recognition. The Point
Cloud Library (PCL) provides a plethora of functions that may assist our project.
The DataGenerator functions would have helped in the creation of the point
cloud. Using this part of the library we could have provided the information from
our setup and created the first portion of the point cloud. We utilized the VTK
visualizer and used our own point cloud structure created specifically for the
Pidar.

The point cloud library can be compiled on a Linux kernel and can be run using
our raspberry Pi and almost any linux system. These libraries make heavy use of
the modified Raspien Linux distribution by utilizing the ‘hard float’ floating points.
Besides using the point cloud library to create our point cloud it also allows us to
generate images from it. Using the point cloud and the depth image libraries we
can create a color coded image that we can display and provide either the
system or the users. This would prove valuable in debugging or fast recognition
of objects.

61

(Permission granted by PCL)

Figure 34 Range Image

4.2.7. Real World Image

In order to produce a more human viewable image we would have liked to be use
an HD camera. This camera would have taken images of the scene in front of it.
The camera would not always be sending the data, we would have to request
that an image be taken sometime during the course of the scan. Once we had
buffered the image we would have used an algorithm that correlates the captured
image to the coordinate in our point cloud.

Since we know the physical dimensions of the capture mechanisms and we know
that images between them will have a consistent differential, we could have used
a static approach to mapping the image. Other methods may have required us to
use special image recognition techniques. However, we will still need to apply
those techniques to produce a better looking image, but would not be the
foundation of our alignment.

In order to approach this problem, we could have used the open source
computer vision library ‘OpenCV’. The OpenCV library contains methods that
allow for translation of imagery to point cloud data. Before the OpenCV libraries
can be utilized, we must remember that the point cloud data must be created to
comply with both the point cloud library (PCL) and the OpenCV library.

To get the most accurate settings, we will first estimate the angles and
dimensions based on the physical construction. However, this estimation will be
improved over time through testing and aligning. This testing and aligning will
take into account all of the intrinsic properties of the camera setups that we may
not be able to accurately measure or take into account.

The resulting image would be a roughly 3D modeled image that should resemble
the actual world in front of the cameras. This output is intended for a human
viewer, as a robotics application may not have use for the real world image.
However, this will be included as part of our output communication possibilities
because there may be an application that may use the real world image. For
instance, some applications may use this to provide object identification and
retrieval based on color and shape. The HD camera will allow the application to
view color as well as its physical makeup.

62

4.2.8. Dynamic Configuration

Our application allows for the ability to manipulate settings. Based on our
observations, we hard coded in the default settings into our application. However,
the unit will be completely customizable using our outward facing interface. The
settings will include the ability to customize the laser sensor resolution and
speed, the motor angle and speed as well as image formatting.

The laser settings will not be directly accessible for the end user. Because there
will be some custom formulas and libraries involved, we cannot allow the user to
directly alter the laser information. However, we will provide a function that will
enable them to do such. When the user desires that a laser scanner be slower or
faster or specifies a resolution, we will then insure that all appropriate settings will
match. All of the calculations will need to be altered and the images will have to
be adjusted in order to compensate for lower or higher resolutions. If the speed
of the laser scan is adjusted, then we may need to compensate on our motor in
order to allow a complete scan to complete.

The motor settings are similar to the laser settings in that we do not allow for
direct access. The motor control functions can be accessed using a custom
function call to our system and will guarantee that all appropriate settings are
altered, just like when the laser settings were altered. With the motor, we will also
need to put constraints. We will have to have a maximum and minimum value for
speed and angles. We also have to check each setting that the user chooses to
check for problems during runtime. Now that we developed the final 3D laser
range finder, we can create curves that can be supplied to operators to know the
proper operating constraints.

The communication system provides the ability to talk to our 3D laser range
finder. We will have a default and persistent method of communication via an
Ethernet connection that will always be able to listen and set settings. This could
be considered our ‘direct access’ method. Using this, users or applications could
communicate to the rangefinder to turn on or off settings and alternative
communication means. A secondary communication system could be developed
that will communicate through a website. This would allow the user to see and
set configuration information in a more convenient and quick manner. This
setting would have been optional and could be turned on and off depending on
the user preferences.

The output display for the user is provided by obtaining multiple single scans and
buffering them to create a complete image. Based on the speed of the scans, it
may take less than a second to create a complete scan. This reduces the load on
the system by just getting the raw data instead of having the render take up
processing time and power on the raspberry Pi. The data can be viewed in a
number of different ways. The user can view just the point cloud information and
will see only dots that form the 3D environment. The user can view a color coded

63

range image that provides a depth map represented in 2 dimensions. The user
could also have viewed an overlay image where the 2D image is transposed onto
the 3D point cloud if it was developed. Finally, the HD camera 2D image could
also have be requested. This image would not have any manipulation, but would
allow the user to see what is seen without any form of translation. All of these
settings will be configurable on the 3D laser range finder.

4.2.9. User Interfaces

There is not a single interface for the 3D laser range finder. Since a
communication protocol is being developed, this has the possibility to have an
interface developed for just about any platform. For development, as well as
other Linux platforms, we will be creating a basic graphical interface. This will
supply us with an ability to see all of our available settings, change settings, view
images, render images, and export data.

Figure 35 Graphical User Interface Mockup

In order to create the graphical application we will first created a command line
application. This command line application was able to process our commands
using a known set of instructions. These instructions will correlate to the different
classes we are developing. We choose to use a command line version of the
application because it will simplify debugging process since we will not have to
debug between the window representation and the actual program processing
the image data.

64

Once the command line version of the application is completed, we created the
graphical interface. Qt is a multiplatform framework that provides simple window
management. The following bulleted lists display the current officially supported
operating systems.

Desktop Platforms

Windows
Linux/X11
Mac OS X

Embedded platforms
Embedded Linux (DirectFB, EGLFS, KMS, and Wayland)
Windows Embedded (Compact and Standard)
Real-Time Operating Systems, such as QNX, VxWorks and INTEGRITY

Mobile platforms
Android
iOS
Windows 8 (WinRT)
BlackBerry 10

All, or portions, of our application can be ported to any of the listed supported
platforms. The work load may need to be offset onto the original hardware so
calculations can be processed locally when the client hardware may be lacking
the processing power or support that may be required. Qt uses C++, which is
useful since our libraries and application will all be written in C++ as well.

While developing the code for our Qt application we were using a Qt supplied Qt
creator for C++. The Qt creator is custom tailored for developing Qt applications;
unlike eclipse which utilizes a plugin to allow for creation and modification of Qt
C++ applications. Using Qt we can create a C++ library of our application instead
of using the command line version. We will have needed to develop the
command line version anyway first to test, but this allowed for a more
streamlined graphical version of the application.

4.2.10. Network Access

Our 3D laser range finder communicated via a network. Onboard of the raspberry
Pi is an RJ45 connection. This connection can be utilized by network traffic to
provide a basic network access. This is the valuable to the project as it is the only
method to obtain the point cloud data. Although, it is not in our currently design, a
website could have served as a testing mechanism or feedback mechanism
when our range finder is not attached to another system. A basic website could
be provided that displays the information from the range finder. By default the
most basic of information would be available on a plain website. We will provide
the source and instructions to any users of our range finder in order to customize

65

the output.

The web service would need to be hosted locally by an onboard web host called
apache. This could provide multiple socket connections to the board and return
values that have been made available to it. The reason this onboard system is so
light and low priority it serves little purpose for actual production usage, but may
assist in development, alignment, or setups. An option for end users of the 3D
laser range finder may be that they create their own website to interact with it.
Since the information will be available to their existing system, they may have
wanted to send that data back to a home base and from there supply a website,
app, twitter feed, etc… with information. This way the end user can relocate the
resources off of the main system so it can work more effectively.

The hosting software would most likely be running a PHP server. PHP would
allow us to interact with our system dynamically without having to recreate the
entire code for the site. In order for the PHP system to work, we would need to
implement a sort of swap file for our data that is accessible to both the Apache
server and our main control application. Common swaps file for use in a MySQL
database. These databases could allow for multiple applications to connect,
access, and modify data at the same time. This would give us the most up to
date information in order to output to the server.

4.2.11. Output Protocol

The most important part of our system is the output information. In the case of
our 3D laser range finder, we had hoped to have multiple ways to access the
data. Originally, we would make our data accessible to other systems using a
custom TCP protocol, however, it was abandoned after testing. In order to
communicate, we would have first needed to establish a serial connection. The
connection would have a default port and baud rate that can be customized in
the main application.

The main application would listen for a client request indefinitely. Once a
connection is established, then the system will be able to take instruction and
output data. We will have different types of data, each of which will have
corresponding codes. These codes will be established within our communication
protocol. Our protocol will be able to be encapsulated within another form of
communication such as RS232 or TCP, so long as our final result allows us to
send and receive data to and from our system in a quick and accurate form.

Within our original communication protocol we wanted to establish a form of
error check. This error checking will consist of creating a cyclic redundancy
check (CRC) code based on the contents of the packet. This CRC code will be
accessible, but not required. We would have allowed for the option to ignore the
CRC code in the options. Some applications may want to have the CRC code to
insure they receive perfect data each time as well as a complete set of data. In
order for CRC checking to occur, both sides of the communication would have to

66

have the CRC hash table. This would have needed to be an agreed upon hash
table, which the default will be provided by us, but some applications may wish to
alter this table to allow for larger data sets or faster calculations.

Overall, the communication protocol will be similar to that of existing protocols
such as the transmission control protocol (TCP) or the user datagram protocol
(UDP) in the sense that they will have a complete reconstruction of data or allow
for data loss. That decision would have depended on the user and depend on the
option or action that is selected.

Our original protocol would have included a header file that contains information
about the data packet. It will start with a packet declaration. This is a known bit
sequence that will tell the receiving end that a packet is starting. The length of
this sequence would be decided upon after testing, however, we would have
chosen to start with a 4 bit sequence to begin with and move up from there if we
encounter false starts. If we chose to go any lower, we may get many false
patterns of the same sequence and will falsely tell the receiving end that a new
packet has started. After the header we will have the total length of the packet.
This will allow the receiving end to retrieve the packet out of the buffer and begin
its decoding.

After the initialization code and the length, there would have been a 3 Byte action
code. Having a large action code will provide us with more than enough unique
action calls and will leave plenty of room for more. These calls are for specific
requests that correspond to a known action. For instance the code AAA [hex]
may correspond to the reset command. The receiving end will see 1010 1010
1010 [binary] come in the action command portion and know that the system will
need to be reset. This sort of command will not have any more than this
information, so there would be no need to have any additional information.
However, for complex commands, a form of subcommand may be necessary.

Packet Section # Bytes

Initialization Byte Sequence 4

Length 2

Action Code 3

Packet Data 16

 Sub-Packet Data

CRC 1

Table 8 Packet Layout

Some commands would require more complexity than a 1 step command. To be
able to accommodate for these commands there would have to have a tiered
structure. The action command will in turn have another sub-action command.
This structure could potentially continue until we reach the limit of the maximum
packet size. For example, if the action command for moving the laser scanner
was requested, then how would it know where to move it? How fast? This action

67

command for the laser movement will be received, but then a second action
command will follow stating which direction. After this the packet will contain the
information that states the information of where to go and how fast. This structure
for decision making will allow us to create in depth, accurate and useful
commands that are accessible to the connected system.

Another major benefit of creating a tiered custom protocol is that the system can
be thought of to be object oriented. The information is in container form and can
be represented in an easy to read, easy to understand, easy to implement
manner. Also, due to the ability to have dynamically sized commands and new
commands, the host system can be updated with new commands and action and
protocols without breaking the client. The client could be updated to allow for new
commands or to continue to utilize the old commands just as it would have in the
past.

There are many types of commands that we would have to handle. There was
the query and response commands that will be short and finite. These include
items reported values or canned responses such as a ‘Ready’ command or a
version number request. These commands let the attached system communicate
with the 3D laser range finder and obtain information about its setup values. This
would allow the connected system make decisions based on those values and
possibly update the values if need be. This brings up the next type of commands,
which are settings. Setting commands would provide a valid value to be set
inside of the program. Given the nature of our protocol, we can do error checking
on the host side before actually using these values to insure that they are valid.
Once a setting is set or denied a response is sent back of either OK or ERROR.

68

[Base16]

A01 Initialize System Requests that a connection be established
A02 Start System Tell the system to start scanning and

generating data
A12 GetReadyStatus Query Requests a confirmation that the system is

ready. Returns OK, KO, or nothing
A13 GetVersionInfo Query Returns the version of the protocol
A14 GetCurrentPosition Query Returns the current angular position of the

3D scanning mechanism
A15 GetLaserSpeed Query Returns the current speed setting of the laser
A16 GetMotorSpeed Query Returns the current speed setting of the

motor
A17 GetCameraRefresh Query Returns the refresh rate of the camera
A18 GetErrorCodes Query Returns any pending error codes
B15 SetLaserSpeed Setting Set value of laser speed
B16 SetMotorSpeed Setting Set value of motor speed
B01 SetMinimumScan

Angle
Setting Sets the minimum scan angle from 0 - 180

degrees
B02 SetMaximumScan

Angle
Setting Sets the maximum scan angle from 0 - 180

degrees.
CD1 GetDepthFrom

Coordinate
Image Returns the best value of depth based on the

provided single coordinate
CD2 GetDepthFrom

CoordinateRange
Image Returns the depth values of a given range of

coordinates
CD3 GetDepthImage Image Return the entire depth image matrix
CD4 GetDepthColorized

Image
Image Return the depth image rendered with color

to designate distances
CC1 GetCameraPixelData Image Returns the value at a given coordinate from

the camera
CC2 GetCameraRange

Data
Image Returns the values of a given range from the

camera
CC3 GetCameraImage Image Returns the entire camera image
A0A EmergencySTOP System Emergency Stop. Stop moving.
A1A Stop System Stop gracefully
AAA Reset System Reset software and positions

Table 9 Original Laser Range FInder Protocol Codes

Our initial protocol also included constructive error responses. When our system
receives a bad command, it will try and return the error code and/or message
with it. For instance, if the command ‘move laser left 200 degrees’, we will return
an error because the laser can only go 0-180 degrees. Depending on the
settings, the system may move to the furthest constraint of 180 degrees, but still
return an error because it could not complete the full turn. The error packet will
include an error type code, the original command code and a constructive ASCII
message. The ASCII message is in plain text. This would be so the attached
system can include a human readable error message that can be used to
troubleshoot.

69

Error Code Meaning

F00 Invalid Command

F02 Incomplete Command

F04 Value Out of Bounds

F08 Bad CRC

F16 Duplicate Request

FAA System Not Ready

FAB Hardware Unresponsive

FAC Timeout

Table 10 Error Codes

4.2.12. Command Sequence

The scanner will function by providing feedback to the external system that
information has been received and executed successfully or not. This allows the
external system to have an absolute understanding of what is currently being
performed on the scanner. This procedure can be seen in the figure below that
demonstrates how the system should have operated with these commands and
errors.

70

Table 11 State Diagram for Command Protocol

The actual method that we utilized in our system was different from the previous

described TCP request/response method. We originally designed the above system, but

after testing, we found that given the amount of data that we were processing, it was

nearly impossible to get data in real time. In order to maintain the ability to have real-

time imagery, we made available the most recent scans as they came in.

Using UDP multicast, we push out around 1080 points every 4 ms. On the server side, we

have a queue of scan vectors. A single vector of around 1080 points is sent and then the

next, and the next, etc… As this is occurring, the Pidar system is adding on points to the

end of the queue. If the queue grows too large due to some processing delay, the queue is

wiped clean. This is necessary as the data is only valuable if it is real time data.

Using UDP, we do not have to wait for a response or correction from the client system.

TCP required us to wait for a response and validate data and this took far too long. The

UDP system lets the Pidar system send the data and forget it. Streaming services opt to

71

use UDP packet data since it allows for realtime applications that loss is fine. If we lose a

few points in a million, it will not severely harm the client system. The other benefit is

that using multicast, any client on the network can obtain the points. This can allow for a

robot to analyze the data at the same time as the user and they can debug more easily.

The command structure to setting points is done using UDP as well, but is done via

ASCII. A command such as “CS10” changes the speed to 10 rpm. The server will then

respond by saying “OK”. Again, UDP is best effort and is not guaranteed, so it is up to

the client to verify that it has occurred.

4.2.13. Output

There would be different types of images and data that would be able to come
out of our system. Requests by the attached system would have mandated which
types of images are create and reported back. Although we would like to have
provided the ability to render images on the system, it is not recommended due
to the limited resources available. The optimal situation was to use a 3D
rendering software to render our raw point cloud data. This allows the user to
rotate an image and have the ability to change the view perspective. If we render
the image on the system it will be static and from only our default viewing angle.
The Qt software we are developing will be able to run under Linux and be able to
interpret our output data to display a few basic images. Since we will be
developing a custom API to connect to our system, anybody will be able to
access the data that has access to the device. Custom software could be written
that calls and utilizes data differently. The 3rd party software Mesh Lab can be
utilized to display our point cloud data information after it is saved from our
custom client.

The static rendered images that we will be producing will utilize the Point Cloud
Library and OpenCV. Between these two libraries, we would be able to identify
key points in the images; correct the images to display properly, render the
images using key points, and output the data. The types of images we create can
be very detailed or very shallow. We can also filter out pieces of images that are
too far to matter. If the external system does not want to see anything beyond 3
meters, then the system can make anything past that point null and only show
the pieces of objects that are within the distance threshold.

Although these images will be close to what we want, they are not our complete
images. In order to display the entire image, we will need to render the full 360
degrees. The system can be set up to only utilize a certain range of angles,
which would automatically be used for rendering.

In order to display 3D data within a 2D field, we will colorize the image based on
color key to represent depth. Using a custom written function, we are able to
colorize the image based on distance from the Pidar. Other images we can
create are point images. This will merely map the points of the data in 3D space
from a specific perspective. The size of the dots will change based on the

72

distance away from the camera. This will provide a basic view of the key points
that make up the depth imagery. This type of image is less resource intensive to
produce since it is using just the coordinates from the point cloud data to create
the image. Another image we would have liked to produce would have been a 3D
mapped image that has an HD camera image overlay. This would be the most
intensive image to render as it will require the use of the OpenCV library as well
as the point cloud library. It will need to look for key points, skew the image
appropriately based on calculable data, and shift images based on depth. The
view of this image will not be able to be used from the center perspective as
everything will look 2 dimensional. This means that the perspective viewing angle
will need to be shifted off center.

The benefit of our method for outputting data is that it is much more scalable and
dynamic than a single output device. The network protocol will allow for use from
different external systems. The API can be scaled and upgraded without
damaging existing setups. The output imagery is useful to the users that are
using this device as they will be able to see and understand what is being fed to
their system. The output imagery can also be upgraded. If we develop a new
rendering method, we can then upgrade the software and be able to provide
those images additionally. The overall ability to be able to update, modify, and
completely customize our sensor will make it viable for almost all relevant
applications.

4.2.14. Linux

This project is using Raspien for the Raspberry Pi ARM microcontroller. This is a
deviation from the Debian Linux distribution that is specifically tailored for the
Raspberry Pi. This port provides an improved “hard float” calculation that allows it
to utilize the floating point hardware calculation of the ARM processor. We will be
able to use a graphical environment and therefore interact and monitor our
software while we are developing and debugging. To alleviate some resources,
we chose to remove the added window manager to solely provide a console
based environment.

The Linux environment serves a great purpose for us. It allows us to utilizing
multitasking. In order to scan data, interpret data, and output data, we have to
multitask. This is all done on the ARM processor and is completed using
threaded applications. We are prioritizing our processes as well to ensure that
the most important processes get the CPU first. The highest priority application
will be the laser scanning software. This must always remain fresh data or else it
will completely undermine the whole project. If the project were to give priority
elsewhere, than our LIDAR system may in fact feed incorrect information. This is
unacceptable because the output of this system will be treated as true every
time. So that is why the scanner portion has highest priority.

73

4.2.15. Raspien OpenCV Package

The OpenCV library can compile for Raspien and provide the image translation
functions. However, we did not end up using any image manipulation libraries on
the raspberry Pi. We would have written the code that utilizes OpenCV as well as
the interpretation software to generate the 3D point clouds. OpenCV would serve
to allow for image homography alignment for our webcam image and our 3D
point cloud. This will be for display. Inherently, this would have provided a 2D
image that can then be used for other calculations or for demonstration data.

We would be using the image processing, or imgproc, portion of the OpenCV
library to fit the image from our webcam to a round image. The Structural
Analysis and Shape Descriptors portion of the library will allow us to perform
these tasks using algorithms that have been developed, testing and run
numerous times by many people. This would leave us with the task of collecting
the data necessary in order to provide the correct input.

The Camera Calibration and 3D Reconstruction portion of the OpenCV library
would have been used once we have our complete x, y, z scan. We would use
the function such as findHomography in order to correctly map our image. The
function calibrateCamera will be used during our development, but will not be
required during the running process. However, if the camera were to have
changed, then the code would need to be recompiled using the corrected values.

ReprojectImageto3D would have assisted us in rendering the final images that
will be human readable. This will allow for debugging and for fast understanding
and representation of what is being seen by the LIDAR.

4.2.16. Programming Languages

C++ was the language of choice for our application. This was chosen because
the most difficult communication we will encounter is the laser scanner and the
library provided is in C++. Additionally, the ability to allocate and clear memory
when we need it is crucial to our program as we need it to be as efficient as
possible. Other languages such as Java do not allow for this level of memory
efficiency. We are utilizing the latest stable version of GCC, a C++ compiler.

Project setup will utilize the cross-platform open-source build system known as
QMake. Essentially Qmake tools allows for developers to create projects which
are platform, and usually operating system, agnostic. The novel idea can allow
for programs and projects written on closed source IDEs and systems such as
Windows to be setup in a way which when distributed can instantly be built,
compiled, and linked using any other operating system or IDE (theoretically). The
build scripts written using QMake are output from the Qtcreator software
automatically. This powerful tool enables developers who switch between
different systems frequently the power to move those desired applications with
them. Many of the libraries and software packages used and mentioned, like

74

OpenCV and PCL, all leverage the QMake build system. This widely used build
system will enable the LIDAR system proposed to be cross-platform as originally
intended and required by the given software specifications. QMake can enable
greatly enhance the efficiencies and logistics required in teamed programming
applications since it does not require any given computer to have specific
software or virtual machines for the applications to compile.

4.2.17. IDE

The programming environment that we utilized on the Raspberry Pi will be qt
creator. This will allow us to have a simple GUI based method of interacting with
our program. For the majority of the code, it will was written elsewhere and then
placed into our project on the Raspberry Pi. Debugging was done using the
Raspberry Pi since we will be heavily dependent on memory, pins, libraries, and
COM ports. This gave us the freedom to use any regular IDE such as eclipse or
QT for C++.

Maintaining our code was performed using a GIT system. This allowed each of
us to develop code and then merge that code into our main source. It provides us
methods of reversing if we need to. This also provides a cloud-based backup
system of our code in the event that a hard drive has become corrupt. Using GIT
we each need to have a uniquely identifying login. This will allow us to have
individual branches that we can each work on and can merge when necessary.
IDEs such as eclipse have but in GIT source control plugins that we utilized that
made the task easier and more streamlined.

75

5. Executive Design Summary

5.1. 2D Laser Specifications

The figure below shows the Hokuyo UTM-30LX 2D LIDAR dimensions and
footprint. This schematic was referenced heavily as prototyping of the 3D
assembly continues into the subsequent semester. This laser has two cables
providing data and hardware synchronization. It has a footprint of 60 by 60 by 87
mm and weighs approximately 370 grams.

Figure 36 Hokuyo 2D Dimensions

(Reprinted with Permission)

76

The table below details the outputs on the robot cable attached to the Hokuyo 2D
laser. This cable is the second included with the Hokuyo and provides additional
functionality which provided useful information into the system generating the full
3D scan data.

Color Function

Brown +12V

Blue 0V

Green Synchronous/Detection output

White COM output (0V: common to power)

Table 12 Hokuyo Cable Pin Out

5.2. Software Structures

The following diagram details the usage in a normal operating situation using our
original communication methods. It demonstrates the sequence of events that
occurred in order for the system to be able to return scan data. First the system
creates an initial connection. Upon connection the system will initialize the
peripherals such as the laser and motor drivers. The control system was to
respond with ‘OK’ to let the external system know it received its request. The
external system then needed to poll the control system to find out when
everything is ready. When the scan begins the control system will continuously
get information from the sensors until it is told to stop. The external system could
have retrieved that information at any time.

77

Figure 37 Sequence Diagram for Normal Operations

Figure 38 Sequence Diagram for Setting Changes

78

5.3. Parts

The following table details every part currently acquired by the group for
assembly during for prototyping and implementations phases. Parts missing from
the table may include specialty connectors or assembly equipment available to
the group through various labs on campus or via the robotics club facilities.

Part Cost Location

Hokuyo UTM-30LX 2D Laser
Range Finder

$6000 Donated by UCF Robotics Club

Raspberry Pi Model B 512MB
RAM

$39.95 http://www.adafruit.com/products
/998

LM7805 Voltage Regulator
12V to 5V USB DC Converter

$1.25 https://www.sparkfun.com/produc
ts/107

Dynamixel MX-28T Robot
Actuator

$219 Donated by UCF Robotics Club

Mounting Bracket

Donated by UCF Robotics Club

Tilt Bracket

Donated by UCF Robotics Club

Bearings

Donated by UCF Robotics Club

Logitech Business Pro 9000 $65 Meritline.com
PCB Board

http://oshpark.com/

LEDs

Donated by UCF Robotics Club

Resistors

Donated by UCF Robotics Club

12V Power Supply

Donated by UCF Robotics Club

Voltage Regulator

Donated by UCF Robotics Club

8-channel Bi-directional Logic
Level Converter - TXB0108

$0 http://www.ti.com/product/txb010
8

Waterproof Connectors

Donated by UCF Robotics Club

Idle Rollers

Donated by UCF Robotics Club

FTDI Chip USB-RS485-WE-
5000-BT

$42.93 http://www.alliedelec.com

Table 13 Parts List

5.4. Program Functions

The image classes of our program will handle the input, output, and generation of
our image. The following diagrams are split up between the image rendering and
the data communication. However, both of these are part of the same program,
but we have separated them logically to get a better understanding. This includes
the laser scanner point cloud, HD camera, library functions and communication
functions. Each method would have contained pertinent functions that pertain to
the class. This containment will allow for easy updating and expansion. It also
allowed for development section by section.

http://www.adafruit.com/products/998
http://www.adafruit.com/products/998
https://www.sparkfun.com/products/107
https://www.sparkfun.com/products/107
http://oshpark.com/
http://www.ti.com/product/txb0108
http://www.ti.com/product/txb0108
http://www.alliedelec.com/

79

In order to generate an image for output, the system would first need to obtain an
image. Obtaining the image will require the communication to the hardware. In
the Laser_COM class we will have the functions available to talk to the laser and
obtain the correct information based on the settings. If we require a camera
image, that will be taken too, from the Camera_COM. This information is then
brought to the control system and sent to the image functions. Here the Image
will pass through and between the OpenCV and Point Cloud Library calls, return
to our functions and generate an image. After the image is rendered, we could
have displayed data on top of the image. This data can provide information about
the current setup, the current values such as the closest distance, as well as a
timestamp. Then the image sent back to the control system, ready to be output.

Figure 39 Image Class Diagram

80

Figure 40 Communications Class Diagram

6. Construction, Testing, and Evaluation

With an iterative design process in mind, testing of individual components was
conducted whenever possible. Testing of the rotating assembly with only the
motor attached will allow for comparison of real and expected dimensions and
rotation angles. PCB tests were conducted to ensure stable power rails and
reliable distribution. Iterative testing ensured a smooth integration process and
provided a method for detecting any issues which may arise from any given
component. Software interfaces were ultimately tested with at least one of the
Robotics Clubs platforms to ensure smooth operation and interoperability.

6.1. 2D Laser

Building a system with a high dependency on the performance of a single sensor
indicates that rigorous testing of said component must occur. Having chosen to

81

use the Hokuyo UTM-30LX sensor due to its capability of outdoor (direct
sunlight) operation the 2D performance characteristics of the sensor must be
measured experimentally both inside and outside. Given the expected
performance outlined by Hokuyo analysis of the actual performance of our exact
sensor must take place. Performance metrics generated by experiment will
greatly enhance overall 3D reconstruction accuracy and is a priority for
evaluation. Testing was performed in both outdoor and indoor environments with
a number of tests for determining distance accuracies in the full 270 degree field
of view of the sensor. To reliably test measurement accuracy the testing surface
and reflectivity (emissivity) must remain consistent across all tests. While it is
impossible to have a true black body for a completely consistent testing platform
any surface with a darkly colored matte surface proved reliable enough for
testing in both indoor and outdoor environments. The test was to take
measurements from a known location and then compare them with the laser data
output. We found that the laser output data was accurate within fractions of
centimeters.

Aside from measurement accuracies of the laser validation of other hardware
features will be needed to validate complete operation. The hardware
synchronization signal of the system gives the project the capability of faster
processing of laser data. Given the event driven nature of the project the sync
signal accuracy must be measured against expected update rates of the sensor.
We validated the pulse times and duration within a specified window will allow for
measurement of this signal to verify the projected update rate of 40 hertz.

6.2. Motor

Upon receipt of the motor various aspects must be evaluated for verification of
those advertised. Testing of the speed, torque, and encoder accuracies will be
most vital. Testing of the motor was done in line with testing of motor
communication from our microcontroller. This allowed for seamless transitioning
during project construction and is the earliest time at which we can test the
system. Using various load weights and protractors, load analysis and encoder
accuracy were measured. With no viable method to evaluate max motor speeds,
software measurements were used instead. This makes the accuracy of the
encoder much more important than any other specification of the motor. Other
physical facets such as weight and dimensions were examined to ensure proper
weight distribution. Load testing was conducted in order to monitor actual power
consumption on average and the effects on theoretical max speeds. Max power
consumption was also tested as the batteries driving the system have maximum
burst discharge rates which must be adhered to.

We found that the motor was not actually going as fast as it reported. So in our
code we have compensated for that speed adjustment and calculated actual
speed based on real time timing data. The power tests proved to work within
operating range and met all of our expectations as we never broke 2 amps even
when holding a motor stall.

82

6.3. Microcontroller

To ascertain that the microcontroller we have is operating properly all theoretical
input and output functionality needed were examined. While typically certified
before delivery as a consumer grade product it is was necessary to test base
level operations before systems integration can occur. The RaspberryPi
functioned properly based on the datasheets provided.

6.3.1. Power and Regulation

Verifying proper power supply voltages and short circuit identification are the
most basic forms of testing evaluation necessary for proper microcontroller
operation. Using a digital voltmeter resistance we measured across all power
rails to every ground pin to ensure that the value read is much greater than 0Ω.
Upon successful completion of this testing, further visual inspection of the board
for possible causes of shorts or broken traces was conducted. Assuming that all
solder joints are full and complete further checks for possible manufacturer
defects were needed. These checks verified that all soldered components
including capacitors and resistors match those to the expected and designed
values for the board.

The regulators chosen for the PCB designed were chosen to be small, and many
of them are surface mount based solutions. With our finished PCB, we soldered
and tested each component as it went on the board. We tested for bridges,
proper operating values, and other connectivity problems. Once we had the
complete PCB soldered we tested and found that our voltage was a little low. So
we adjusted our resistance value going into our regulator and brought our voltage
up to our optimal voltage.

Below is a list of all equipment required to carry out all of the hardware testing for
the PCB and microcontroller.

 Multi-meter

 Oscilloscope

 DC current meter

 Logic analyzer

 Microscope

6.3.2. Input and Output

Microcontrollers provide many different forms of signal processing through on
board circuits and hardware. Some signals may be converted between digital
and analog via ADCs or DACS and others may be passed directly through from
the MCUs themselves. Proper verification of these widely varying inputs and

83

outputs will provide the group with a uniform testing platform which can perform
in the variety of environments expected of this system. Testing of the inputs and
outputs of the MCU tested the following functionality at minimum:

1. Digital Input and Output
2. Analog Input and Output
3. PWM Signal Generation
4. TTL and Serial Connections
5. I2C and DACs

Most output signals from the microcontroller were evaluated using the simplest of
equipment, namely a multi meter and oscilloscope. Serial based communications
involved more hardware as connections to physical devices need to be made in
order to appraise two way communications. More expensive supplemental
testing hardware such as signal generators and logic analyzers would enable the
group to test in a more controlled fashion. The robotics club facilities provided the
group with all necessary testing equipment for all signals into and out of the
microcontroller.

6.4. Software Unit Testing

Upon completion of the basic system capabilities including point cloud formation,
3D depth imaging, dynamic system configuration, and networking communication
heavy software testing must incur to test all race conditions in the system.
Reliability is the key of software unit testing and is a key component in any good
development life-cycle. Below is a list of unit tests which were performed for the
system to stress and verify all possible configurations work and do not throw
unexpected errors or crash the laser’s operation. This testing also ensured full
functionality of every component as the system is formulated.

1. Verify that the commands being set the PC side of the network are getting

changed on the 3D laser side.

2. Verify that setting changes do cause real-time closed loop control change of
the continuous sweeping of the laser to accomplish the desired resolutions.

3. Test that a hard reboot of the system will not cause a total system failure

requiring a manual login to restart software applications.

4. Tests of multiple users on the same local network subscribing to the lasers

data does not interfere with operation or the receipt of other users of the data.

5. Verify that the microcontroller is capable of having the laser on a different

USB port without having to manually enumerate it.

84

6. Test that the output timing of the data adjusts to the resolution and the
rotating range assigned to the laser.

7. Test each application in tandem to ensure proper permissions over the
network as well as resource limitation.

8. Verify proper coordinate system transformation over the entire scanning
range of the laser.

9. Test actual versus theoretical timing of the Hokuyo’s synchronization signal to
test response time of interrupt driven application.

10. Tests setting motor shaft positioning with entire assembly mounted to ensure
accurate control within tolerance of motor.

11. Testing of proper decay of point clouds over time as new scans are received.

12. Tests of 2D laser parameters and effects on 3D and other output data must
be verified for consistency.

We were able to successfully perform all of the above tests at the completion of
the project. We had to adjust the methods of communication in order to maintain
he real-time ability. We also had to speed up laser and motor communication
rates to allow for the most stable performance due to concurrency.

6.5. System Performance

In order to create the best system, we analyzed the system under different
conditions. Testing under the different conditions will allowed us to choose
constraints for sensors, ideal readings for sensors, and other observable data
that can be used in setting the default settings. In order to create code that can
handle an issue, we must first have knowledge of the issue. This information can
potentially have a dramatic effect on the method of operation in the software. The
hardware may not need nearly as much alteration due to the fact that we are
setting our constraints based on hardware and the environment.

6.5.1. Regular Environment

Our 3D laser range finder can be used in a plethora of situations. Using the
scanner in inside conditions will prepare the scanner for use in enclosed areas.
“Inside” areas may include a large or small area. The differences between large
and small areas can change the readings dramatically. If the sensor is in a room
that is 10 meters x 10 meters x 10 meters, then it may be able to see the walls. If
we are in a giant warehouse and the room is 100 meters x 100 meters x 100
meters, then the system may not be able to see the walls and we will need to
know what that looks like.

85

The testing scenarios that will be utilized when testing under a regular
environment are detailed in the following list:

1. A small room that is clear of any obstacles:
This room will provide us with the ability to see how the system reacts to just
seeing the walls of a room without any interference. During this test we collected
the data and the feedback from this allowed us to alter the interpolation of points
in a different manner. Once we tested again, we found our lines to be straight
and have a perfect rendering of the environment. This acted as our baseline
scan.

Figure 41 Camera Image of Clear Hallway

86

Figure 42 Point Cloud of Clear Hallway

2. A large room that is clear of any obstacles:
Utilizing this type of scenario may allow us to see how the system reacts to an
area that may not provide any feedback through our sensor. This could be
considered null data and we would have to handle how this scenario plays out.
We found that areas that reach beyond our 30 meter limit were unable to be seen
and that our system would not return the points.

3. A small room that has a few small objects:
Having just a few obstacles will allow us to test identifying objects. This could
provide us information on how the system will identify and align imagery. This
test showed us that we can successfully view objects in small room, however it
shows that items that are closer cause further items to be unseen has it creates a
larger shadow.

87

Figure 43 Depth Colored Point Cloud

4. A large room that has a few small objects:
Without the knowledge of a rear wall, the system may interpret data incorrectly.
In the event that we have small objects with a theoretical infinite background, this
may provide odd results. This data will be crucial in identifying objects. The
objects within the room were able to be seen if they were within 30 meters.

5. Inside a small room while the system is at different angles:
 We will test at different angles. We will start at 90 degrees and then continue for
180 degrees of rotation. Rotating the system in an inside environment will allow
us to view how the system reacts to a floor, wall, and obstacle at different
orientations. We may find that we need to add an accelerometer to the system in
order to adjust the orientation or perhaps it will just create the point cloud data as
is stands. We found that it does not matter where we start the rotation as it is
continually updating and the angle is always reported correctly.

88

Figure 44 Range Image Comparison With Camera Image

6. Inside a room with people moving:
This will give us the ability to see the information obtained when objects are
moving non-linearly and in motion. Inside environments may include people
regularly and this scenario could easily be one of the most common. We will
need to see how the system handles this sort of movement and what we may
need to do to compensate for a faster or slower refresh rate. We found that we
need to adjust the speed of the motor for faster scans and expire the points
faster in order to have a decent refresh rate.

7. Inside a room with one object slightly covered by another object:
This scenario will allow us to see how the system handles an item that is only
partially seen that may look to be part of another object. This will give us the
information that could help us fix or develop the functions to transpose images in
a more efficient or correct manner. If an item is covered, we found that we cannot
see the item at all.

89

8. An object that moves progressively closer to the sensor:
If an object is moving towards the scanner or the scanner is moving toward the
object, then the size and depth of that object will change. We will need to
document, test, and understand how this motion will read on our point cloud data.
This system may create something that is skewed instead of normalized.
Given a decent refresh rate on the client. It does not matter if an object moves
closer as the point cloud only shows the latest possible data.

6.5.2. Outside Environment

The outside environment may cause another group of issues with our system. An
outside environment is susceptible to additional conditions such as humidity, fog,
lighting, rain, wind, and other weather conditions. Additionally there will be less
uniformity in an environment when using the sensor outside versus an inside
room. The following list is a few of the testing scenario for outside use.

1. Regular weather, normal sun:
This test will give us a baseline for the remainder of our tests. The lighting alone
could cause issues with our system and we may need to adjust our code if it
realizes that the unit is being used outside. We found that the point cloud renders
the same as indoors except there are far less points due to the sky being
invisible.

Figure 45 Nighttime Scan Outside

90

2. Cloudy weather:
We will run the system under different circumstances while the weather is cloudy.
This will allow us to see if the laser sensor can take readings when the lighting is
low. Same as regular weather testing, the clouds made no difference for our
scans.

3. Rainy conditions:
Rain is a tangible object and may be picked up on our laser sensor. Using our
system in raining conditions may prove that a valid image may not be able to be
created, or perhaps there is a way to counter this with an algorithm to remove the
raindrops. Rain made some of the points disappear as well as some of the
objects incomplete. The rain changes the reflectivity of an object and objects that
are too reflective are not seen correctly.

4. Motion on uneven surfaces:
We will move the sensor across an uneven area using a vehicular robot. This test
will provide us the information when the scanner does not have a uniform ground
level and may give invalid readings. We will need to know how this information
looks so we can invalidate data or at least flag it as uneven. Motion on our client
creates an odd image. It places objects in a position of existing objects until the
full scan is updated. The client will need to utilize some type of motion sensor to
make adjustments.

5. Many people moving:
It is not uncommon for large groups of people to be moving around at a single
location. This could be a walkway on the UCF campus. This test will demonstrate
how the scanner can pick up moving objects of different speeds and we can see
how it comes together. This may help us decide in default scanning values. This
tested led us to have some “ghosting” as the images refreshed. However, it was
able to see everyone in the image as long as they were visible.

6.5.3. Project Summary

Our 3D laser range finder will provide the ability to view an environment in 3D.
This application can be used on many external systems as it will provide the eyes
to any machine that decides to use it. Our system is robust, scalable, and
successfully delivers the item requested by the Robotics Club at UCF.

91

7. Bibliography

[1] Lidar Output Protocol
(http://asprs.org/a/society/committees/standards/asprs_las_format_v10.
pdf)

[2] SM-42BYG011-25 Stepper Motor
(https://www.sparkfun.com/products/9238)

[3] 42BYGHM809 Stepper Motor
(https://www.sparkfun.com/products/10846)

[4] A3967 Microstepping Driver
(https://www.sparkfun.com/products/10267)

[5] STMicro's L6470 Stepper Motor Driver
(https://www.sparkfun.com/products/11611)

[6] Hitec HS-805BB Servo Motor
(https://www.sparkfun.com/products/11881)

[7] Dynamixel RX-24F Robot Actuator
(http://www.trossenrobotics.com/dynamixel-rx-24F-robot-actuator.aspx)

[8] KM-12FN20-100-06120 DC Motor
(https://www.sparkfun.com/products/8910)

[9] GB37Y3530-12V-83R DC Motor (http://www.robotmesh.com/12v-dc-
motor-83rpm-w-encoder)

[10] E6A2-CS3E Rotary Encoder
(https://www.sparkfun.com/products/10790)

[11] A6B2-CWZ3E-1024 Rotary Encoder
(https://www.sparkfun.com/products/11102)

[12] PCL
http://www.pointclouds.org

[13] SimpleCV
(http://www.simplecv.org)

[14] PDAL
(http://www.pointcloud.org/index.html)

[15] Communication
(http://urgnetwork.sourceforge.net/html/index.html)

http://asprs.org/a/society/committees/standards/asprs_las_format_v10.pdf
http://asprs.org/a/society/committees/standards/asprs_las_format_v10.pdf
https://www.sparkfun.com/products/9238
https://www.sparkfun.com/products/10846
https://www.sparkfun.com/products/10267
https://www.sparkfun.com/products/11611
https://www.sparkfun.com/products/11881
http://www.trossenrobotics.com/dynamixel-rx-24F-robot-actuator.aspx
https://www.sparkfun.com/products/8910
http://www.robotmesh.com/12v-dc-motor-83rpm-w-encoder
http://www.robotmesh.com/12v-dc-motor-83rpm-w-encoder
https://www.sparkfun.com/products/10790
https://www.sparkfun.com/products/11102
http://www.pointclouds.org/
http://www.simplecv.org/
http://www.pointcloud.org/index.html
http://urgnetwork.sourceforge.net/html/index.html

92

[16] UrgCtrl Laser Scanner Accessible Methods
(http://www.hokuyo-
aut.jp/02sensor/07scanner/download/urg_programs_en/classqrk_1_1Ur
gCtrl-members.html)

[17] Dynamixel RX-24F Robot Actuator Servo
(http://www.trossenrobotics.com/dynamixel-rx-24F-robot-actuator.aspx)

[18] Camera
(http://www.raspberrypi.org/phpBB3/viewtopic.php?f=43&t=50639)

[19] ASPRS
(http://asprs.org/a/society/committees/standards/asprs_las_format_v10.
pdf).

[20] OpenCV

(http://docs.opencv.org/modules/refman.html)

[21] RPi Hardware Access
(http://elinux.org/Rpi_Low-level_peripherals)

[22] RX-24F
http://support.robotis.com/en/techsupport_eng.htm#product/dynamixel/
rx_series/rx-24f.htm

[23] TI LMZ14203
http://www.ti.com/product/lmz14203

[24] TI LM7805CV
https://www.sparkfun.com/datasheets/Components/LM7805.pdf

[25] CUIINC V78-2000
http://www.cui.com/product/resource/v78xx-2000.pdf

[26] Hokuyo PBS
http://www.hokuyo-aut.jp/02sensor/07scanner/pbs.html

[27] URG-04LX-UG01
http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html

[28] URG-04LX

(http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html)

[29] Hokuyo UTM-30LX
(http://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html)

[30] Sparkfun Images
http://creativecommons.org/licenses/by-nc-sa/3.0/

http://www.hokuyo-aut.jp/02sensor/07scanner/download/urg_programs_en/classqrk_1_1UrgCtrl-members.html
http://www.hokuyo-aut.jp/02sensor/07scanner/download/urg_programs_en/classqrk_1_1UrgCtrl-members.html
http://www.hokuyo-aut.jp/02sensor/07scanner/download/urg_programs_en/classqrk_1_1UrgCtrl-members.html
http://www.trossenrobotics.com/dynamixel-rx-24F-robot-actuator.aspx
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=43&t=50639
http://asprs.org/a/society/committees/standards/asprs_las_format_v10.pdf
http://asprs.org/a/society/committees/standards/asprs_las_format_v10.pdf
http://docs.opencv.org/modules/refman.html
http://elinux.org/Rpi_Low-level_peripherals
http://elinux.org/Rpi_Low-level_peripherals
http://support.robotis.com/en/techsupport_eng.htm#product/dynamixel/rx_series/rx-24f.htm
http://support.robotis.com/en/techsupport_eng.htm#product/dynamixel/rx_series/rx-24f.htm
http://www.ti.com/product/lmz14203
https://www.sparkfun.com/datasheets/Components/LM7805.pdf
http://www.cui.com/product/resource/v78xx-2000.pdf
http://www.hokuyo-aut.jp/02sensor/07scanner/pbs.html
http://www.hokuyo-aut.jp/02sensor/07scanner/pbs.html
http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html
http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html
http://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html
http://creativecommons.org/licenses/by-nc-sa/3.0/

93

A. Copyright Permissions

Hokuyo Permission

Point Cloud Library Permission

94

Sparkfun Usage License

http://creativecommons.org/licenses/by-nc-sa/3.0/

TI Permission

Fair Use Policy
http://www.youtube.com/yt/copyright/fair-use.html

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.youtube.com/yt/copyright/fair-use.html

